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Abstract

We present a novel algorithm for efficient learning and feature selection in high-dimensional

regression problems. We arrive at this model through a modification of the standard regression

model, enabling us to derive a probabilistic version of the well-known statistical regression

technique of backfitting. Using the Expectation-Maximization algorithm, along with varia-

tional approximation methods to overcome intractability,we extend our algorithm to include

automatic relevance detection of the input features. This Variational Bayesian Least Squares

(VBLS) approach retains its simplicity as a linear model, butoffers a novel statistically robust

“black-box” approach to generalized linear regression with high-dimensional inputs. It can be

easily extended to nonlinear regression and classificationproblems. In particular, we derive the

framework of sparse Bayesian learning, e.g., the Relevance Vector Machine, with VBLS at its

core, offering significant computational and robustness advantages for this class of methods.

The iterative nature of VBLS makes it most suitable for real-time incremental learning—which

is crucial especially in the application domain of robotics, brain-machine interfaces and neu-

ral prosthetics, where real-time learning of models for control is needed. We evaluate our

algorithm on synthetic and neurophysiological data sets, as well as on standard regression and

classification benchmark data sets, comparing it with othercompetitive statistical approaches

and demonstrating its suitability as a drop-in replacementfor other generalized linear regression

techniques.

Keywords: high-dimensional regression, feature selection, generalized linear models, vari-

ational Bayesian methods, sparse Bayesian learning
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1 Introduction

Real-world data such as those obtained from neuroscience, chemometrics, data mining or

sensor-rich environments is often extremely high-dimensional, severely underconstrained (few

data samples compared to the dimensionality of the data) andinterspersed with a large number

of irrelevant and/or redundant features. Combined with inevitable measurement noise, efficient

learning from such data still poses a significant challenge to state-of-the-art supervised learn-

ing algorithms, even in linear settings. We are especially interested in scenarios where a large

number of high-dimensional samples need to be processed, potentially in a real-time, incre-

mental fashion (i.e., whered is the number of input dimensions,N is the number of samples

in the data set, andd < N ). While traditional statistical techniques for supervisedlearning

(e.g., Partial Least Squares regression, backfitting) are often efficient and robust for these prob-

lems, they lack a probabilistic interpretation and cannot easily provide measures needed for

model selection such as the evidence of the data or predictive distributions. On the other hand,

while recent statistical learning algorithms in supervised learning compute such information,

some lack computational efficiency as, for instance, in Gaussian process regression or classical

implementations of support vector learning, especially inthed < N scenarios we are interested

in.

Our paper introduces a new algorithm, Variational Bayesian Least Squares (VBLS), that

possesses both efficiency and a sound probabilistic foundation. It is derived by developing a

Bayesian formulation of a classical non-parametric, non-probabilistic regression algorithm. We

demonstrate that the algorithm can significantly improve the computational efficiency of sparse

Bayesian learning, while performing feature detection and automatic relevance determination.

Additionally, the algorithm avoids any potentially expensive cross-validation or tuning of meta
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parameters by the user, offering a statistically robust, “automatic” method that can be applied

across data sets from various systems and incorporated intomore complex learning algorithms.

In this way, we can apply this technique to very high-dimensional problems in both linear and

nonlinear scenarios.

The algorithm can be interpreted as a Bayesian version of backfitting that does not require

any sampling, making it suitable for implementation in incremental form for real-time appli-

cations (e.g., as in application domains such as robotics, brain-machine interfaces, tracking

systems etc.) and for embedment in other iterative methods.

The iterative nature of VBLS is invaluable in real-time situations where decisions need to

be made quickly such that an approximate solution is acceptable. In these scenarios, waiting

a longer time for a very accurate solution may not be an acceptable alternative. Additionally,

VBLS is most advantageous when embedded in other iterative methods,offering a significant

computational improvement.

We start by first discussing some of the popular approaches for supervised learning of high-

dimensional, underconstrained data, examining methods such as principal component regres-

sion, backfitting, partial least squares regression and least absolute shrinkage and selection oper-

ator regression, to name a few. Then, in Sec. 3, we derive backfitting from a probabilistic model

and solve it within the EM framework. Thirdly, we extend the model to incorporate structured

priors, as described in Sec. 4, allowing us to exploit Bayesian model selection. Using a vari-

ational approximation technique, we arrive at a new algorithm, VBLS, that can be applied to

both regression and classification problems. Sec. 5 shows that while VBLS is derived within the

context of a linear model, it is also a powerful tool for supervised learning in nonlinear settings.

Finally, we evaluate VBLS on high-dimensional synthetic andreal data sets, demonstrating its

significant computational advantages over other competitive statistical learning methods.
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2 Computationally Tractable Linear Regression

We begin by examining the graphical model for linear regression, as shown in Fig. 1, which

corresponds to the following generative model:

y = bTx + ǫ (1)

where, for successive samples from this model, we assume theǫ are i.i.d. distributed asǫ ∼

Normal(ǫ; 0, ψy). Given a data set of observed tuplesxD = {(xi, yi)}
N

i=1 our goal is to estimate

the optimal linear coefficientsb =

[

b1 b2 · · · bd

]T

which combine the input dimensions to

produce the outputy.

It is easy to see that under our current noise model, the optimal estimate of the regression

parameters (in a least-squares or maximum-likelihood sense) is given by:

bOLS =
(
XTX

)−1
XTy (2)

whereX denotes a matrix whose rows contain thexi andy is a column vector containing the

correspondingyi. Eq. (2) is also known as the ordinary least squares (OLS) solution. A fan-in

of the type observed fromx to y in Fig. 1 couples all the regression coefficients in the posterior

inference—a fact reflected in the need to evaluate the covariance matrixXTX in Eq. (2). With

an increasing number of fan-in variables in the graphical model (or equivalently, an increasing

input dimensionalityd), evaluation of the solution in Eq. (2) becomes increasingly computa-

tionally expensive (approximatelyO(d3)) and numerically brittle. While one can attempt to

reduce the complexity down toO(d2) with efficient matrix inversion techniques (Belsley, Kuh,

& Welsch, 1980), solutions to this problem typically fall into one of two categories:
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1. Dimensionality reduction for regression:Those that try to find a low-dimensional, full-

rank representation of the data which captures the salient information required to perform

the regression.

2. Data structures for fast statistics:Those that deal with the complete dimensionality, but

structure computations as efficiently and robustly as possible (for example, by performing

successive inexpensive univariate regressions).

In the following subsections, assume we are given a data set{X,y} with inputs X =

[x1 . . .xN ]T consisting ofd-dimensional vectorsxi (wherei = 1, 2, . . . , N andN is the num-

ber of data samples) and outputsy = [y1 . . . yN ]T consisting of scalarsyi. Without any loss of

generality, we shall assume that bothX andy are mean-zero. We want to find the vectorb of

regression coefficients which linearly combine the inputx to predicty.

In an attempt to perform a comprehensive (although not exhaustive) review of the literature,

we discuss some examples of algorithms that are representative of the two categories described

above.

2.1 Dimensionality Reduction for Regression

Often the information relevant to predicting the outputy can be localized to a low-dimensional

manifold within the domain ofx. The methods discussed in this section rely on the assumption

that by performing a dimensionality reduction on the input space, the resulting lower dimen-

sional manifold captures sufficient information to accurately predict the output.
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2.1.1 Principal Component Regression

The underlying basis of principal component regression (PCR)(Massey, 1965) is that the

low-dimensional subspace which explains the most variancein the x also captures the most

essential information required to predicty. Starting with the empirical covariance matrixΣPCR

of the input data:

ΣPCR =
1

N − 1

N∑

i=1

xix
T
i (3)

we compute its eigen-decomposition:

ΣPCRvj = λjuj (4)

whereuj is thej-th eigenvector andλj the corresponding eigenvalue. By projecting the input

x onto the principalK eigenvectors using the projection matrixU = [u1 u2 . . . uK ], we can

compute the regression solution as follows:

bPCR =
(
UTXTXU

)−1
UTXTy (5)

Note that as a result of the projection onto the orthogonal eigenvectorsu1, . . . ,uK , the

matrix
(
UTXTXU

)
in Eq. (5) is diagonal, and hence, trivial to invert—the brunt of the com-

putation having already been expended in the eigen-decomposition step. As a result, PCR es-

sentially reduces the multivariate regression to a set of independent univariate regressions along

each of the orthogonal principal component directions.

A serious drawback of PCR is that it is based purely on variancein the input data (Schaal,

Vijayakumar, & Atkeson, 1998). The regression solution is therefore highly sensitive to pre-



Ting, D’Souza, Vijayakumar, Schaal Efficient High-Dimensional Regression 8

processing operations such assphering, which modify the perceived variance of each input

dimension. Hence, low-variance input dimensions which arenevertheless important predictors

of the output may be discarded in favor of high-variance, butirrelevant, dimensions. If however,

we operate on the joint spacez = [xTy]T of the data, we can take the output into consideration

when determining the appropriate lower-dimensional manifold.

2.1.2 Joint-space Factor Analysis for Regression

Factor analysis (Everitt, 1984; Ghahramani & Hinton, 1997)is a density estimation tech-

nique which assumes that the observed dataz is generated from a lower dimensional process

characterized byK latentor hiddenvariablesv as follows:

zi = Wvi + ǫi where1 ≤ i ≤ N (6)

If we assume that the latent variables are independently distributed as:

vi ∼ Normal(vi;0, I)
1

ǫi ∼ Normal(ǫi;0,Ψ)

then the parametersW andΨ can be easily estimated using Maximum Likelihood (Ghahramani

& Hinton, 1997) or Bayesian (Ghahramani & Beal, 2000a) techniques. In joint-space factor

1The notation Normal(x; µ,Σ) denotes a Normal distribution overx with meanµ and co-

varianceΣ.
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analysis for regression (JFR), we define:

z ≡






x

y




 and W ≡






Wx

Wy




 and Ψ ≡






Ψx 0

0T ψy




 (7)

Once we estimateW andΨ for the joint data space ofz, we can conditiony onx and marginal-

ize out the latent variablesv to obtain:

〈y|x〉 = Wy

(
I + WT

x
Ψ−1

x
Wx

)−1
WT

x
Ψ−1

x
︸ ︷︷ ︸

bT

JFR

x (8)

where〈·〉 indicates expectation. Eq. 8 is equivalent to the below:

bJFR = Ψ−1
x

Wx

(
I + WT

x
Ψ−1

x
Wx

)−1
WT

y (9)

Note that the required matrix inversion of
(
I + WT

x
Ψ−1

x
Wx

)
is of the order of thelatentdimen-

sionalityK, which makes joint-space factor analysis for regression computationally attractive

for problems in which the underlying latent variable manifold is known to be relatively low

dimensional (i.e.K ≪ d).

2.1.3 Joint-space Principal Component Regression

Tipping and Bishop (1999) show the relationship between factor analysis and principal com-

ponent analysis. In particular, they show that factor analysis reduces to PCA if isotropic output

noise is assumed (i.e.,Ψ = σ2I). Taking the factor analysis solution for regression in Eq.(9)
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and assuming thatΨ = σ2I, we can simplify the regression solution so that it is:

b =
(
σ2I
)−1

Wx

(

I + WT
x

(
σ2I
)−1

Wx

)−1

WT
y

= Wx

(
σ2I + WT

x
Wx

)−1
WT

y (10)

Additionally, in PCA for regression, if we follow the assumption thatv ∼ Normal(0, I), then

each column ofW is an eigenvector scaled by its corresponding eigenvalue:

W = [λ1u1 λ2u2 . . . λKuK ] = UΛ (11)

where, as previously defined in Sec 2.1.1,U = [u1 u2 . . . uK ] is ad ×K matrix of principal

eigenvectors andΛ is the diagonal matrix of corresponding eigenvalues (i.e.,[λ1 λ2 . . . λK ] in

its diagonal). Making use of the orthogonality of the eigenvectors, we can write:

WT
x
Wx = WTW −WT

y Wy

= Λ2 −WT
y Wy

If we denoteΛ̄2
= σ2I + Λ2, then we can rewrite Eq. (10) to get:

b = Wx

(

Λ̄
2
−WT

y Wy

)−1

WT
y

= Wx

[

Λ̄
−2
− Λ̄

−2
WT

y

(

WyΛ̄
−2

WT
y − I

)−1

WyΛ̄
−2

]

WT
y (12)
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Since we have a scalar outputy, the matrix inversion
(

WyΛ̄
−2

Wy − I
)−1

reduces to a scalar

division, making Eq. (12) now:

b = Wx

[

Λ̄
−2
−

Λ̄
−2

WT
y WyΛ̄

−2

WyΛ̄
−2

WT
y − 1

]

WT
y (13)

If we take the limit of the quantity above asσ2 approaches 0, then̄Λ2
= Λ2, i.e., exactly the

matrix of squared eigenvalues. In which case, we can furthersimplify Eq. (13) as:

bJPCR= Ux

[

I−
UT

y Uy

UyUT
y − 1

]

UT
y (14)

whereU = [UT
x

UT
y ]T is the matrix containing the eigenvectors of the joint dataz in its

columns.

2.1.4 Kernel Dimensionality Reduction for Regression

Recently, Fukumizu, Bach, and Jordan (2006) have suggested the following method to

achieve dimensionality reduction for regression. Assume that [U V] is thed-dimensional or-

thogonal matrix, whereU spans the subspace ofx “relevant” to predictingy andV spans the

orthogonal “irrelevant” subspace.

If we definexR = UTx andxR̄ = VTx, then kernel dimensionality reduction seeks to find

the subspace which minimizesI(y|xR,xR̄|xR), whereI(x1, x2) denotes mutual information

defined by:

I(x1, x2) =

∫ ∫

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
dx1dx2

This concept is extended to the more general case of reproducing kernel Hilbert spaces on the
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domains ofy, xR andxR̄ endowed with Gaussian kernels.

It should be emphasized that as with the other methods described in this section, kernel

dimensionality reduction requires that the latent dimensionality K be a known quantity. In

general, however, unless explicit meta-level knowledge ofthe data is known beforehand, the

estimation of this quantity would require expensive cross-validation to avoid overfitting.

2.1.5 Stepwise regression

Stepwise regression (Derksen & Keselman, 1992) is a popularstatistical technique for large

data sets that chooses dimensions to include in a regressionmodel. The selection of dimen-

sions for the model can be in a forward or backward manner. Forexample, forward stepwise

regression starts with no terms in the model and, at each step, adds the most statistically sig-

nificant dimension (using either the highestf -statistic or lowestp-value) until none are left. In

contrast, backward stepwise regression starts with all dimensions in the model and removes the

least significant until the remaining dimensions are statistically significant. Unfortunately, there

are several issues with stepwise regression. These includeits inability to cope with redundant

dimensions (it deteriorates in the presence of collinearity) and its inability to shrink regression

coefficients (Tibshirani, 1996), resulting in too-large regression coefficients. These properties,

among others, make it problematic for high-dimensional data sets.

2.1.6 Partial Least Squares Regression

Instead of seeking a low-dimensional version of the problem, some methods seek to struc-

ture the computation in such a way that the problem is decomposed into computationally ef-
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ficient sub-problems. For example, by decomposing the multivariate regression problem into

successive univariate regressions, one can create robust,iterative methods which do not suffer

from the difficulties of matrix inversion for underconstrained data sets. Partial Least Squares

regression (PLS) (Wold, 1975) is one example of such a method.

1: Initialize: Xres = X, yres = y

2: for k = 1 toK do //K ≤ d whered is max. input dim.

3: vk ← XT
resyres //correlation direction

4: sk ← Xresvk //project input

5: bk ← sT
k yres/

(
sT
k sk

)
//univariate regression

6: yres← yres− bksk //compute residual output

7: Xres← Xres− skp
T
k wherepk ≡ XT

ressk/
(
sT
k sk

)
//compute residual input

8: end for
Algorithm 1: Partial Least Squares Regression

In Sec. 2.1.1, we noted that PCR projected the input data onto avery specific set of direc-

tions, i.e. the principal eigenvectors. As a direct result,the coefficients of the optimal regression

vectorbPCR fall out of inexpensive univariate regressions along each projection direction. How-

ever, obtaining the eigenvectors is an (expensive for larged)O(d3) operation that can be reduced

to a fasterO(d2). It is here that PCR must expend the bulk of its computation.

PLS regression is a technique which is extensively used in high-dimensional and severely

underconstrained domains such as in chemometrics. Rather than compute the covariance struc-

ture of the input space, as is done in PCR, PLS iteratively chooses its projection directionsvk

(at thekth iteration) according to the direction of maximumcorrelation between the (current

residual) input and the output. Computation of each projection direction isO(d) (linear) in the
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dimensionality of the data, making PLS a highly efficient algorithm. As shown in Algorithm 1,

successive iterations create orthogonal projection directions by removing the subspace of the

input data used in the last projection. PLS requires no expensive matrix inversion or eigen-

decomposition and, thus, is well suited to the high-dimensional, yet severely underconstrained

data sets in applications such as near infrared (NIR) spectrometry (Frank & Friedman, 1993).

The number of projection directions found by PLS is only bound by the dimensionality of

the data, with each univariate regression on successive projection components further serving

to reduce the residual error. Using alld projections is equivalent to performing Ordinary Least

Squares (OLS) regression. Hence, to avoid overfitting, the algorithm is typically stopped after

K projection components are found, whereK is determined empirically using cross-validation.

It can be shown that if the distribution of the input data is spherical (i.e. has covariance structure

σ2I), then PLS only requires a single projection to optimally reconstruct the output.

2.1.7 Backfitting

1: Init: X = [x1, . . . ,xN ]T ,y =

[

y1, . . . , yN

]T

, gm,i = gm(xi; θm),gm = [gm,1, . . . , gm,N ]T

2: repeat

3: for m = 1 to d do

4: rm ← y −
∑

k 6=m gk //compute partial residual (fake target)

5: θm ← arg minθm
(gm − rm)2 //optimize to fit partial residual

6: end for

7: until convergence ofθm

Algorithm 2: Backfitting
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Another very general framework for estimating additive models of the formy(x) =
∑d

m=1

gm(x; θm) is backfitting (Hastie & Tibshirani, 1990), where the functions gm are adjustable

basis functions (e.g. splines), parameterized byθm. As shown in Algorithm 2, backfitting de-

composes the statistical estimation problem intod individual estimation problems by creating

“fake supervised targets” for each functiongm. At the cost of an iterative procedure, this strat-

egy effectively reduces the computational complexity of fan-ins in graphical models and allows

easier numerical robustness control since no matrix inversion is involved.

For all its computational attractiveness, backfitting presents two serious drawbacks. Firstly,

there is no guarantee that the iterative procedure outlinedin Algorithm 2 will converge as it is

heavily dependent on the nature of the functionsgm. Secondly, the updates have no probabilistic

interpretation, making backfitting difficult to insert intothe current framework of statistical

learning which emphasizes confidence measures, model selection and predictive distributions.

Note that Hastie and Tibshirani (2000) have proposed a Bayesian version of backfitting. Their

algorithm, however, relies on Gibbs sampling, which is moresuitable when dealing with the

nonparametric spline models discussed there and is quite useful for generating samples from

the posterior additive model. We, instead, focus on developing a Bayesian version of backfitting

that does not require any sampling and hence, can be implemented in incremental form for use

in real-time applications such as real-time brain-machineinterfaces or robotics.

In practice, a large class of methods can be traced to have similar computational underpin-

nings. For example, in the case of linear regression (XTXb = XTy), Gauss-Seidel/Jacobi

updates are a natural specialization of the general backfitting algorithm:

bm =

partial residual
︷ ︸︸ ︷

(y −Xm̄bm̄)T
xm

xT
mxm

(15)
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wherexm = [x1m · · ·xNm]T , i.e. the vector ofmth dimension entries, whileXm̄ denotes the

data matrix with themth dimension removed andbm̄ denotes the regression coefficient vector

with themth coefficient removed. The well-known cascade-correlation neural network archi-

tecture (Fahlman & Lebiere, 1989) can also be seen to have similar algorithmic underpinnings;

the addition of each new hidden unit can be considered to be the tuning of an additional ba-

sis function in the sequence, with the previous basis functions being locked to their previously

tuned forms.

2.1.8 Least Absolute Shrinkage and Selection Operator regression

Least absolute shrinkage and selection operator (LASSO) regression (Tibshirani, 1996)

shrinks certain regression coefficients to zero, giving interpretable models that are sparse. It

minimizes the sum of squared errors, given a fixed bound on thesum of absolute value of the

regression coefficients. However, LASSO regression and a wealth of other L1-regularized re-

gression methods have an open parameter, typically a regularization parameter, that needs to be

set. Some of the methods for solving L1-regularized regression problems (especially large-scale

problems) include convex optimization techniques such as sequential quadratic programming

or interior- point methods, e.g., (Kim, Koh, Lustig, Boyd, & Gorinevsky, 2007), coordinate de-

scent methods (J. Friedman, Hastie, & Tibshirani, 2007), the Gauss-Seidel method (Shevade &

Keerthi, 2003), generalized iterative scaling (Goodman, 2004), and iterative re-weighted least

squares (Lokhorst, 1999; Lee, Lee, Abbeel, & Ng, 2006).
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The LASSO estimatêblasso is then defined as:

b̂lasso = arg min







N∑

i=1

(

yi −
∑

j

bjxij

)2





subject to

∑

j

|bj| ≤ t

wheret ≥ 0 is a tuning parameter which can be set usingn-fold cross-validation or manual

hand-tuning. For smaller values oft, LASSO regression gives solutions that are sparse esti-

mates of the least squares estimates. For larger values oft, the above constraint has little effect,

resulting in a solution similar to ridge regression. The main difference between LASSO regres-

sion and ridge regression is that LASSO attempts to shrink the solution by using L1 penalty

norm (i.e.
∑

b) while ridge regression uses L2 penalty norm (i.e.
∑

b2). Ng (2004) shows that

this contributes to LASSO being an effective algorithm suitable for high-dimensional data sets,

at the expense of an open parameter that needs to be set using cross-validation or through the op-

timization of a regularization “path” of solutions2, e.g., (Efron, Hastie, Johnstone, & Tibshirani,

2004).

2.2 Data Structures for Fast Statistics

Significant computational gains can be achieved by using smarter data structures to organize

the information required for statistical analysis. Examples of these include KD-trees and ball-

trees (J. H. Friedman, Bentley, & Finkel, 1977; Gray & Moore, 2001; Omohundro, 1990),

which allow caching of sufficient statistics over recursively smaller regions of the data space,

and AD-trees (Moore & Lee, 1998; Komarek & Moore, 2000) whichspeed up computations

2That is, solutions that minimize theL1 loss function. When the value of the open/tuning

parameter changes, regularization “paths” of solutions are generated.
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involving conjunctive queries and “counting” statistics.

KD-trees (J. H. Friedman et al., 1977) are data structures which partition the input space into

hyper-rectangular regions. The root node contains the bounding box of the entire data set, and

each non-leaf node has two children which partition the parents space by splitting the bounding

box along its longest dimension (see Fig. 2). Splitting stops when the bounding boxes reach a

certain minimum size, or when the number of points in a box reaches a minimum value. The key

computational saving results fromannotatingeach node of the tree with specific statistics about

the data in the partition of space rooted at that node. For example, caching the bounding box

of the data in each node allows eliminating a significant number of explicit comparisons when

answering nearest-neighbor queries. In this way, for each query, only a fraction of the leaves

in the tree are visited resulting in sub-linear computational complexity for most operations that

typically require at least linear time.

A similar computational saving is achievable for kernel density estimation if we are willing

to sacrifice a small amount of accuracy. Given the bounding boxes of the nodes in the KD-tree,

we can bound the minimum and maximum value of the kernel function (assuming a monotoni-

cally decreasing function) within a hyper-rectangle. If the difference between the minimum and

maximum is less than a tolerance valueǫ, we can skip the evaluation of each query point within

the node and approximate it by an average value. This achieves significant savings when the

query points are the data points themselves, as is frequently the case in settings where we eval-

uate the data on kernels that are centered at the data points;so-calledN -body problems (Gray

& Moore, 2001).

KD-trees suffer in higher dimensional spaces since as the dimensionality increases, one

observes that most of the volume is concentrated in a thin shell at the outer edges of the

space. Metric-trees and ball-trees (Omohundro, 1990) are alternatives that are robust to high-
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dimensional problems. They do not necessarily require a Euclidean space, but merely one in

which the triangle inequality holds (Moore, 2000). Because of this, we can derive simple yet

computationally efficient bounds on the distances between aquery pointq, and any pointx

belonging to a ball of radiusr:

‖q− x‖ ≤ |q− c‖+ r

‖q− x‖ ≥ |q− c‖ − r

These distance bounds are then used in a manner similar to thebounding boxes of KD-trees to

reduce the number of comparisons required to be performed with the actual data points.

AD-trees (Moore & Lee, 1998) are an efficient representationfor statistical methods which

rely on “counting” occurrences of records satisfying sets of conjunctive queries over the record

attributes. Traditional representation schemes for such data include precomputing answers to

each query, which are stored in so-calledcontingency tables. Contingency tables are useful

in creating probability tables for Bayes nets and in conjunctive rule learning algorithms such

as decision tree learning. Potential uses for statistical machine translation are obvious when

we use the popular TF-IDF (term-frequency, inverse-document-frequency) representation of

documents.

AD-trees allow the precomputed answers to queries which areavailable in contingency

tables to be stored in a fraction of the memory requirements.For data sets in which records

arrive incrementally or in which the initial cost of constructing the AD-tree is too high, an

incremental version is also possible (Komarek & Moore, 2000).
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2.3 Summary

For the purpose of comparison, we included the following algorithms for evaluation in our

experiments: stepwise regression, PLS regression and LASSO regression. We omitted the

other methods reviewed in this section due to computationaldrawbacks or unsuitable model

assumptions. For example, methods like joint-space factoranalysis for regression, principal

component regression, joint-space principal component regression and kernel dimensionality

reduction for regression require that the latent dimensionality K be known. Estimation of this

quantity for high-dimensional data sets could be potentially very expensive due to the cross-

validation procedures needed. Additionally, principal component regression may also discard

important low-variance inputs that contribute to the output in favor of high-variance, but irrel-

evant, input dimensions since it seeks components to maximize the variance in the input data.

Backfitting may be computationally more robust for high-dimensional inputs, but it is unable

to detect irrelevant and redundant input dimensions shouldthese exist in the input data. Please

refer to Schaal et al. (1998) for a more comprehensive reviewof these methods.

3 Probabilistic Backfitting

The graphical model shown in Fig. 4(a) generalizes our discussion in Sec. 2, such that the

input “dimensions” of Fig. 1 are replaced by arbitrary basisfunctionsfm(x) of the input—a

model commonly known asgeneralizedlinear regression (GLR) (Hastie & Tibshirani, 1990).

Our goal remains the same: given a data setxD = {(xi, yi)}
N

i=1, we wish to determine the most

likely values ofbm which linearly combine the basis functionsfm to generate the outputy.

We also noted in Sec. 2.1.7, that the backfitting family of algorithms is an efficient set of
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methods which, under the right circumstances, is extremelyrobust since it requires no expensive

matrix inversion, and thus avoids the numerical pitfalls therein. A drawback of the backfitting

procedure is that it does not stem from a generative probabilistic model, which limits its ap-

plication in current Bayesian machine learning frameworks.In this section, we will describe

how a probabilistic version of backfitting can be derived by making a simple structural modifi-

cation to the graphical model for standard generalized linear regression. The statistical model

corresponding to Fig. 4(a) can be written as follows:

y(x) =
d∑

m=1

bmfm(x; θm) + ǫ

i.e., multiple predictorsfm(x; θm) (where1 ≤ m ≤ d) that are generated by an adjustable non-

linear transformation with parametersθm and that are fed linearly to an outputy by an inner

product with a regression vectorb = [b1b2 · · · bd]
T plus additive noiseǫ. As we mentioned in

Sec. 2, evaluation ofb using the OLS solution in Eq. (2) becomes increasingly computationally

expensive and numerically brittle. Note that ridge regression can “fix” such problems numeri-

cally by stabilizing the matrix inversion with a small additive diagonal term. However, a ridge

factor typically introduces uncontrolled bias.

A simple modification of the graphical model of Fig. 4(a), however, enables us to create the

desired algorithmic decoupling of the predictor functions, and gives backfitting a probabilistic

interpretation. Consider the introduction of random variableszim as shown in Fig. 4(b). These

variables are analogous to the output of thegm function of Algorithm 2 and can also be inter-

preted as an unknownfake targetfor each branch of the regression fan-in. For the derivationof
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our algorithm, we assume the following conditional distributions for each variable in the model:

yi|zi ∼ Normal
(
yi;1

Tzi, ψy

)

zim|xi ∼ Normal(zim; bmfm(xi), ψzm)

(16)

where1 = [1, 1, . . . , 1]T . It needs to be emphasized that now, the regression coefficients bm

arebehindthe fan-in. With the introduction of the random variableszim, we are essentially in

a situation where we wish to optimize the parametersφ =
{

{bm, ψzm}
d

m=1 , ψy

}

, given that

we have observed variables{xi, yi}
N

i=1 and that we have unobserved variables{zi}
N

i=1 in our

graphical model. This situation fits very naturally into theframework of maximum-likelihood

estimation via the EM algorithm.

3.1 An EM Algorithm for Probabilistic Backfitting

Given our modified statistical model represented by the graphical model of Fig. 4(b), we

wish to estimate the parametersbm and (possibly) optimize the individual functionsfm(x; θm)

with respect to the parametersθm. This is easily formulated as an EM algorithm, which maxi-

mizes theincompletelog likelihoodlog p(y|X) which, from Fig. 4(a), can be expressed as:

log p(y|X) = −
N

2
logψy −

1

2

N∑

i=1

(
yi − bT f(xi)

)2
+ const (17)
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The EM algorithm however, operates by maximizing the expected completelog likelihood

〈log p(y,Z|X; φ)〉, where:

log p(y,Z|X; φ) = −
N

2
logψy −

1

2ψy

N∑

i=1

(
yi − 1Tzi

)2

−
d∑

m=1

[

N

2
logψzm+

1

2ψzm

N∑

i=1

(zim−bmfm(xi; θm))2

]

+ const (18)

As this maximization is solely based on standard manipulations of normal distributions, we

omit derivations and summarize the EM update equations forbm and the noise variancesψy and

ψzm as follows:

E-Step :

1TΣz1 =

(
d∑

m=1

ψzm

)[

1−
1

s

(
d∑

m=1

ψzm

)]

σ2
zm = ψzm

(

1−
1

s
ψzm

)

〈zim〉 = bmfm(xi) +
1

s
ψzm

(
yi − bT f(xi)

)

M-Step :

bm =

∑N

i=1 〈zim〉 fm(xi)
∑N

i=1 fm(xi)2

ψy =
1

N

N∑

i=1

(
yi − 1T 〈zi〉

)2
+ 1TΣz1

ψzm =
1

N

N∑

i=1

(〈zim〉 − bmfm(xi))
2 + σ2

zm

where we defines = ψy +
∑d

m=1 ψzm, andΣz = Cov(z|y,X). In addition, the parametersθm



Ting, D’Souza, Vijayakumar, Schaal Efficient High-Dimensional Regression 24

of each functionfm can be updated by setting:

N∑

i=1

(

〈zim〉 − bmfm (xi; θm)
)∂fm (xi; θm)

∂θm

= 0 (19)

and solving forθm. As this step depends on the particular choice offm, e.g. splines, kernel

smoothers, parametric models, etc., we will not pursue it any further and note thatanystatistical

approximation mechanism could be used.

There are two observations to be made regarding the above EM algorithm. First, all equa-

tions are algorithmicallyO(d), whered is the number of predictor functionsfm. Second, if we

substitute the expression for〈zim〉 in the maximization equation forbm, we get the following

update equation for the (n+ 1)-th EM cycle:

b(n+1)
m = b(n)

m +
ψzm

s

∑N

i=1

(

yi−
∑d

k=1 b
(n)
k fk(xi)

)

fm(xi)
∑N

i=1 fm(xi)2
(20)

Thus, in an EM cycle, themth regression coefficient is updated by an amount proportional to the

correlation between themth predictor and the residual error. Eachbm is updated independently

(that is, independent of the other regression coefficientsbp, wherep 6= m for p = 1, .., d). In

each EM cycle, alld regression coefficients are updated.

In this way, the residual can be interpreted as forming a “fake target” for themth branch of

the fan-in. As the next section shows, this enables us to place the algorithm in the context of

backfitting.

The matrix inversion in the OLS solution requiresO(d2) if more efficient and robust matrix

inversion methods are used. In comparison, the computational complexity of the EM-based

probabilistic backfitting algorithm isO(d) per EM iteration. Should the number of EM itera-
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tions be significant, it is true that the run-time of the EM algorithm could be as long as non-

iterative approaches. However, the true benefit of our iterative approach arises when dealing

with real-time applications, where decisions need to be made quickly in a short amount of time

such that an approximate solution is acceptable. Additionally, EM-based probabilistic back-

fitting can be embedded into other iterative methods in orderto realize more computationally

efficient update equations.

3.2 Relating Traditional and Probabilistic Backfitting

To better understand how Eq. (20) can be interpreted as Probabilistic Backfitting, notice

that backfitting can be viewed as a formal Gauss-Seidel algorithm: an equivalence becomes

exact in the special case of linear models (Hastie & Tibshirani, 1990). For the linear system

FTFb = FTy, the Gauss-Seidel updates for the individualbm are:

bm =

∑N

i=1

(

yi −
∑d

k 6=m bkfk(xi)
)

fm(xi)
∑N

i=1 fm(xi)2
(21)

Note that if used naively, Eq. (21) does not guarantee convergence at all. The Gauss-Seidel

algorithm extends the above equation by adding a fraction(1 − ω) of bm to the update, giving

us the well-knownrelaxationalgorithms:

b(n+1)
m = (1− ω)b(n)

m + ω

∑N

i=1

(

yi −
∑d

k 6=m bkfk(xi)
)

fm(xi)
∑N

i=1 fm(xi)2
(22)

which has improved convergence rates foroverrelaxation(1 < ω < 2) or improved stability

for underrelaxation(0 < ω < 1). Forω = 1, the standard backfitting of Eq. (21) is recovered.

The appropriate value ofω which allows the iterations to converge, while still maintaining a
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reasonable convergence rate, can only be determined by treating Eq. (21) as a discrete dynami-

cal system and analyzing the eigenvalues of its system matrix—a task takingO(d3) (orO(d2),

for more efficient methods). If however, we setω = ωm = ψzm/s in Eq. (22), it can be shown

(after some algebraic rearrangement) that we obtain our EM update in Eq. (20) exactly. Indeed,

this is a probabilistic version of backfitting.

A similar EM algorithm and model structure has been proposedin the context of signal

processing (Feder & Weinstein, 1988), but we believe this isthe first time that the connection of

this probabilistic derivation to the backfitting algorithmhas been demonstrated. As we show in

Sec. 4, this allows us to place this class of methods within a much wider framework of Bayesian

model complexity estimation.

3.3 Convergence of Probabilistic Backfitting

In general, for any maximum likelihood problem, the EM algorithm guarantees monotonic

increase in the incomplete likelihood, but does not guarantee that the final solution is the global

maximum. This section tries to answer the following questions:

1. What is the point of convergence of the probabilistic backfitting EM algorithm?

2. Are there local maxima (globally suboptimal solutions) in its likelihood space?

The answers to both questions depend on the fact that the incomplete likelihood (or marginal-

ized complete likelihood) function forlinear regression in Eq. (17) has a (possibly non-unique,

but convex) global maximum corresponding to the OLS solution of Eq. (2), but no local max-

ima. Could the introduction of the hidden variables and additional parameters in Eq. (18) in-

troducelocal maxima in the likelihood landscape? Note that for examiningconvergence prop-
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erties, we only focus on the estimation of the parametersφ = [b, ψz1, . . . , ψzd, ψy]
T , as the

functionsfm cannot be treated in general without knowing their structure. We start with the

assumption that we have reached a stationary pointφ∗ in the EM algorithm, which implies:

∂ 〈ln p(y,Z|X; φ)〉

∂φ

∣
∣
∣
∣
φ=φ∗

= 0 (23)

Using Jensen’s inequality, it is easy to show that for an arbitrary distributionQ(Z) over the

hidden variables:

ln p(y|X; φ) ≥ 〈ln p(y,Z|X; φ)〉Q(Z) +H [Q(Z)] = F(Q,φ) (24)

whereH [·] denotes entropy. EM performs a coordinate ascent; alternately maximizingF with

respect toQ (in the E-step) andφ (in the M-step). DifferentiatingF(Q,φ) w.r.t. φ at the

stationary pointφ∗, and noting that the entropy termH [Q(Z)] is independent ofφ, gives:

∂F(Q,φ)

∂φ

∣
∣
∣
∣
φ=φ∗

=
∂ 〈ln p(y,Z|X; φ)〉

∂φ

∣
∣
∣
∣
φ=φ∗

= 0 (25)

Note, however, that the preceding E-step setsQ(Z) to the true posterior distributionp(Z|y,

X; φ∗), which raises the lower bound in Eq. (24) to an equality—i.e.ln p(y|X; φ) = F(Q,φ)—

from which it follows that:

∂ ln p(y|X; φ)

∂φ

∣
∣
∣
∣
φ=φ∗

=
∂F(Q,φ)

∂φ

∣
∣
∣
∣
φ=φ∗

= 0 (26)

i.e. we have reached a maximum in theincompletelikelihood as well. Given that theincom-

pletelog likelihoodln p(y|X; φ) in Eq. (17) hasonlya global maximum (i.e., the OLS solution),
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reaching the stationary point of Eq. (23) in our EM algorithmfor probabilistic backfitting must

correspond to finding the OLS solution. Therefore, probabilistic backfitting is indeed perform-

ing true linear regression with a global optimum.

4 Variational Bayesian Least Squares

The probabilistic version of backfitting suffers from overfitting when the input data contains

many redundant and/or irrelevant features. To regularize its OLS solution, we adopt a Bayesian

framework and place a prior distribution over the regression coefficientsb to get VBLS. As

the following two sections demonstrate, our choice of priorstructure results in two different,

yet important, forms of regularization. We also discuss howwe can easily obtain confidence

intervals and demonstrate how VBLS can be additionally applied to classification problems.

4.1 Regularizing the Regression Vector Length

The graphical model for our first form of Bayesian prior is shown in Fig. 5(a). We place

a Gaussian prior over the regression coefficient vectorb so that the variance of the prior is

controlled by a single precision parameterα. As a result, our uncertainty in the value of this

prior precision is represented by a broad Gamma distribution overα:

b|α ∼ Normal(b; 0, I/α)

α ∼ Gamma(α; aα,0, bα,0)

(27)

whereaα,0 andbα,0 are the initial hyperparameter values for the Gamma distribution overα.

Two motivations lie behind our choice of Gamma prior. Firstly, as a scale parameter, an un-
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informative distribution overα must be uniform over alog scale—corresponding to a Jeffreys

prior (Jeffreys, 1946; Gelman, Carlin, Stern, & Rubin, 2000).We fulfill the requirement of an

uninformative distribution by choosing the Gamma distribution parameters,aα andbα, appro-

priately (i.e,aα, bα → 0). Secondly, the Gamma distribution is analytically convenient, since

it is a conjugate distribution for the Gaussian precision. As the graphical model in Fig. 5(a)

shows, our set of unobserved random variables in the model isnow
{

b, α, {zi}
N

i=1

}

, and we

are especially interested in obtaining posterior distributions over the random variablesb and

α. The parameters we wish to optimize are nowφ =
{

b, {ψzm}
d

m=1 , ψy, aα, bα

}

. The joint

probability over this model extends Eq. (18) to:

log p(y,Z,b, α|X; φ) = log p(y,Z,b, α|X;Ψz, ψy, aα, bα)

= −
N

2
logψy −

1

2ψy

N∑

i=1

(
yi − 1Tzi

)2

−
d∑

m=1

[

N

2
logψzm+

1

2ψzm

N∑

i=1

(zim−bmfm(xi; θm))2

]

+
d

2
logα−

α

2

d∑

m=1

b2m +(aα,0 − 1) logα− bα,0α + const

(28)

While the log joint posteriorlogQ(Z,b, α) is readily available from Eq. (28) (up to a con-

stant additive term), the extraction of marginal probabilities of interest such asQ(b) andQ(α)

is analytically intractable. Therefore, we use a factorialvariational approximation (Ghahramani

& Beal, 2000b; Parisi, 1988; Rustagi, 1976) to the true posterior, in which we assume that the

posterior distribution factorizes3 over the variables of interest, i.e., we restrict ourselvesto a

family of distributions of the formQ(Z,b, α) = Q(Z)Q(b)Q(α). This procedure allows us to

3This particular factorization causes the marginal posterior of b to be a Gaussian. An alter-

native (also analytically tractable) formulationQ(Z,b, α) = Q(Z)Q(b, α) is also possible in
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analytically derive an EM-like set of update equations for the individual posterior distributions:

Q(α) = Gamma
(

α; âα, b̂α

)

Q(b) =
d∏

m=1

Normal
(
bm;µbm

, σ2
bm

)

âα = aα,0 +
d

2

b̂α = bα,0 +

〈
bTb

〉

2

σ2
bm

=

(

1

ψzm

N∑

i=1

fm (xi)
2 + 〈α〉

)

µbm
= σ2

bm

(

1

ψzm

N∑

i=1

fm (xi) 〈zim〉

)

(29)

where:

〈
bTb

〉
= 〈b〉T 〈b〉+ 1TΣb1,

〈b〉 = [µb1 µb2 · · · µbd
]T , andΣb is the posterior covariance ofb (i.e., a diagonal matrix with

µbm
entries on its diagonal).

The form of theQ(Z) distribution updates remains identical to that derived in Sec. 3.1, with

the exception that the parametersbm are replaced with the expectations〈bm〉, so we shall not

repeat them here. However, substituting the expressions for 〈zim〉 in the update equations for

which the resulting marginal forb is a Student-t distribution.
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the distribution ofQ(b) gives the following update for the regression coefficients.

〈bm〉
(n+1) =

( ∑N

i=1 fm(xi)
2

∑N

i=1 fm(xi)2 + ψzm 〈α〉

)

〈bm〉
(n)

+
ψzm

s

∑N

i=1

(

yi −
∑d

k=1 〈bk〉
(n) fk(xi)

)

fm(xi)
(
∑N

i=1 fm(xi)2 + ψzm 〈α〉
) (30)

where, as in Sec. 3.1,s = ψy +
∑d

m=1 ψzm.

Comparing the solution in Eq. (30) with the result derived forprobabilistic backfitting in

Eq. (20), we see that in absence of correlation between the residual error and thek-th predictor

fk(x)—that is, if the second term of Eq. (20) is zero, the first term of Eq. (30) is a decaying term.

As a result, the corresponding regression coefficient〈bm〉 will go to zero after some number of

EM iterations. This effect is similar to that ofshrinkagemethods such as ridge regression.

Note that the structure of the marginal prior over the regression coefficientsb in Fig. 5(b)—

that is, the marginal prior ofb from Eq. (27)—suggests that solutions closer to the origin are

favored. In fact, sharing the common precision variableα across all the regression coefficients

results in a regularized solution which minimizes the norm‖b‖2 of the entire regression vector.

This is, in fact, identical to a ridge regression solution with a single ridge parameter. However,

in our formulation, the estimation of the “correct” value ofthe ridge parameter is implicitly

inferred without the need for traditionally expensive cross-validation techniques.

Regularizing the regression vector length is particularly useful when there are groups of

inputs supplying redundant information (for robustness across sensors, for example), since the

regression solution tends to distribute the responsibility for the output inference over all relevant

input dimensions.
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4.2 Regularizing the Number of Relevant Inputs

Modifying Fig. 5(a) slightly, we now place individual precision variablesαm overeachof

the regression parametersbm, resulting in Fig. 6(a). This model structure can be captured by

the following set of prior distributions:

b|α ∼

d∏

m=1

Normal(bm; 0, 1/αm)

α ∼
d∏

m=1

Gamma(αm; aαm,0, bαm,0)

(31)

whereaαm,0 andbαm,0 are the initial hyperparameter values forαm.

As the graphical model in Fig. 6(a) shows, our set of unobserved variables in the model is

now
{

b,α, {zi}
N

i=1

}

. The modified likelihood function can be rewritten as follows:

log p(y,Z,b, α|X; φ) = log p(y,Z,b, α|X;Ψz, ψy, aα, bα)

= −
N

2
logψy −

1

2ψy

N∑

i=1

(
yi − 1Tzi

)2

−
d∑

m=1

[

N

2
logψzm+

1

2ψzm

N∑

i=1

(zim−bmfm(xi; θm))2

]

+
d∑

m=1

[
d

2
logαm −

αm

2
b2m

]

+
d∑

m=1

{(aαm,0 − 1) logαm − bαm,0αm} + const

(32)

Proceeding as in Sec. 4.1, we can derive the following iterative updates to the distributions of
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Q(b) andQ(α):

Q(α) =
d∏

m=1

Gamma
(

αm; âαm
, b̂αm

)

Q(b) =
d∏

m=1

Normal
(
bm;µbM

, σ2
bm

)

âαm
= aαm,0 +

1

2

b̂αm
= bαm,0 +

〈b2m〉

2

σ2
bm

=

(

1

ψzm

N∑

i=1

fm (xi)
2 + 〈αm〉

)−1

µbm
= σ2

bm

(

1

ψzm

N∑

i=1

fm (xi) 〈zim〉

)

(33)

where:

〈
b2m
〉

= 〈bm〉
2 + σ2

bm
= µ2

bm
+ σ2

bm

Deriving the update equations for the mean of the regressioncoefficients as we did in Eq. 30,

we get:

〈bm〉
(n+1) =

( ∑N

i=1 fm(xi)
2

∑N

i=1 fm(xi)2 + ψzm 〈αm〉

)

〈bm〉
(n)

+
ψzm

s

∑N

i=1

(

yi −
∑d

k=1 〈bk〉
(n) fk(xi)

)

fm(xi)
(
∑N

i=1 fm(xi)2 + ψzm 〈αm〉
) (34)

where, as in Sec. 3.1,s = ψy +
∑d

m=1 ψzm.

The solution in Eq. (34) is almost identical to that of Eq. (30), except now the regularization
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of the regression solution occurs over the magnitude ofeachregression coefficient, rather than

the overall norm. This is a direct effect of having individual precision variables, rather than a

common precision variable. The result is a regression solution that minimizes thenumberof

relevant inputs required to accurately predict the output,much like the Automatic Relevance

Detection (ARD) framework in neural networks (Neal, 1994). This is also intuitively apparent

from the marginal prior overb shown in Fig. 6(b)—that is, the marginal prior ofb from Eq. (31),

which favorssparsesolutions which lie along the (hyper-)spines of the distribution.

While the regularization previously discussed in Sec. 4.1 isuseful in situations wherere-

dundantinformation is to be regularized but not eliminated in the regression, this current form

of regularization (i.e., regularizing the number of inputs) is desirable when the input contains

information that isirrelevant to predicting the output.

Note that the graphical models of Figs. 5(a) and 6(a) are two extremes in a spectrum of

regularization options. One can certainly conceive of models in which groups of regression

coefficients are placed under control of individual precision parameters. This situation may

make sense, for example, when we have groups of redundant sensors providing input. It allows

an irrelevant signal (set of sensors) to be eliminated if it does not contribute to the output. At

the same time, it allows a relevant set to exploit the redundancy of information within its group

to provide a more robust input signal.

4.3 Alternative Posterior Factorization

In Secs. 4.1 and 4.2, we made the assumption that the posterior distribution factorized over

the regression coefficientsbm and their precisionsα (or αm, in Sec. 4.2). We can relax this as-

sumption if we make a small modification to the graphical model to retain analytical tractability.
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Fig. 7(a) shows an alternative to Fig. 5(a), which can be described by the following conditional

distributions:

yi|zi ∼ Normal
(
yi;1

Tzi, ψy

)

zim|bm, α, xim ∼ Normal(zim; bmxim, ψzm/α)

b|α ∼ Normal(b; 0, I/α)

α ∼ Gamma(α; aα,0, bα,0)

(35)

The dependency ofzim on the precisionα may seem unnecessary, but Gelman et al. (2000)

provide a justification: it is reasonable to assume that the variance inzim scales with the variance

in bm since increasing our uncertainty in the prior ofbm should imply a corresponding increase

in the uncertainty ofzim as well. In this case, we will obtain a joint posterior distribution

Q(b, α), which is then marginalized to get the individual distributionsQ(b) andQ(α). The

derivation proceeds in a manner similar to that described inthe previous sections. The crucial

difference is that the marginal distribution overb is now a product of Student-t distributions

instead of the Gaussian distributions of Secs. 4.1 and 4.2. The following equations summarize
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the marginal posteriors for the graphical model of Fig. 7(a):

Q(α) = Gamma
(

α; âα, b̂α

)

Q(b) =
d∏

m=1

tv
(
bm;µbm

, σ2
)

âα = aα,0 +
Nd

2

b̂α = bα,0 +
d∑

m=1

1

2ψzm





N∑

i=1

〈
z2

im

〉
−

(
N∑

i=1

fm(xi)
2 + ψzm

)−1( N∑

i=1

〈zim〉 fm(xi)

)2




ν = 2âα

µbm
=

(
N∑

i=1

fm(xi)
2 + ψzm

)−1( N∑

i=1

〈zim〉 fm(xi)

)

σ2
bm

=
b̂αψzm

âα

(
N∑

i=1

fm(xi)
2 + ψzm

)−1

(36)

where〈z2
im〉 = 〈zim〉

2 + σ2
zm

.

For the case of individual precision variablesαm shown in Fig. 7(b), we can derive an
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alternative model to Fig. 6(a), having the following posterior distributions:

Q(α) =
d∏

m=1

Gamma
(

αm; âαm
, b̂αm

)

Q(b) =
d∏

m=1

tv
(
bm;µbm

, σ2
)

âαm
= aαm,0 +

N

2

b̂αm
= bαm,0 +

1

2ψzm





N∑

i=1

〈
z2

im

〉
−

(
N∑

i=1

fm(xi)
2 + ψzm

)−1( N∑

i=1

〈zim〉 fm(xi)

)2




ν = 2âα

µbm
=

(
N∑

i=1

fm(xi)
2 + ψzm

)−1( N∑

i=1

〈zim〉 fm(xi)

)

σ2
bm

=
b̂
(m)
α ψzm

âα

(
N∑

i=1

fm(xi)
2 + ψzm

)−1

(37)

where〈z2
im〉 = 〈zim〉

2 +σ2
zm

. This approximation can be used in conjunction with a distribution

over the noise parameterψy to derive a form of robust regression which is less sensitiveto

outliers than in our original formulation (where the predictive distribution over the output is a

Gaussian).

4.4 Initialization of Parameters

A few comments should be made regarding the initialization of priors used for the models

in Secs 4.1, 4.2 and 4.3. Specifically, the initial hyperparameter values{aα,0, bα,0}—or, for

the ARD model,{aαm,0, bαm,0}
d

m=1—need to be set before running the EM algorithm. We set

aαm,0 andbαm,0 so that the prior distribution overαm is uninformative or “flat”, using values
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of aαm,0 = bαm,0 = 10−8, for all m = 1, .., d. This means that the initial mean ofαm is 1,

with high uncertainty, i.e.,αm has a rather flat prior distribution. These initial hyperparameter

values can be used for all data sets and need never be modified.We use these values for all our

experiments and data sets.

4.5 Obtaining Confidence Intervals

Given any of the two versions of VBLS, it is easy to obtain predictive distributions over

regression outputs at query points. Marginalizing over thehiddenzim αm variables in the

model gives us the following distribution overy|x,D, whereD is the training data set.

p(y|x,D) = Normal
(

y; 〈b〉T x, ψy + 1TΨz1 + xTΣbx
)

(38)

whereΨz is the noise variance ofz andΣb is the posterior covariance ofb.

4.6 Extension to Classification

VBLS can be adapted to handle categorical outputsyi ∈ {−1,+1} by changing the target

conditional distributionp(yi|zi) to a Bernoulli distribution via the sigmoidlink functiong(x) =

(1 + exp(−x))−1. In this case, the conditional distribution can be expressed as:

p(yi|zi) =
1

1 + exp (−yi1Tzi)
= g(yi1

Tzi)
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Since this renders the posterior intractable due to non-conjugacy withp(zi|xi), we follow Jaakkola

and Jordan (2000) and introduce an additional lower bound using the inequality:

g(x) ≥ g(ξ) exp

{
x− ξ

2
− ϕ(ξ)

(
x2 − ξ2

)
}

whereϕ(ξ) = tan(ξ/2)/4ξ andξ is the variational parameter for the family of lower bounds

to g(x) (see Fig. 8). Hence, we can lower bound the likelihoodp(yi|zi) by the parameterized

versionp(yi|zi, ξi) as follows:

p(yi|zi) = g(yi1
Tzi)

≥ p(yi|zi; ξi)

= g(ξi) exp

{
yi1

Tzi − ξi
2

− ϕ(ξi)
(
zT

i 11Tzi − ξ
2
i

)
}

(39)

Note that this form still is an exponent of a quadratic inzi which retains conjugacy with

p(zi|b;xi) and allows us to proceed with our EM derivation as before—with the additional

step that we must optimize theξi parameters. We again start by writing out the logcomplete
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likelihood, which is the joint distribution over the known and unknown variables in the model:

log p(yi|zi,xi;b, ψz) =
N∑

i=1

log p(y|zi) +
N∑

i=1

d∑

m=1

log p(zim|xi; bm, ψzm)

≥
N∑

i=1

p(y|zi; ξi) +
N∑

i=1

d∑

m=1

log p(zim|xi; bm, ψzm)

=
N∑

i=1

[

log g(ξi) +
yi1

T 〈zi〉 − ξi
2

− ϕ(ξi)
(
1T
〈
ziz

T
i

〉
1− ξ2

i

)
]

−
d∑

m=1

[

N

2
lnψzm +

1

2ψzm

N∑

i=1

(zim − bmfm(xi; θm))2

]

+ const

(40)

where:

1T
〈
ziz

T
i

〉
1 = 1T 〈zi〉 〈zi〉

T
1 + 1TΣzi

1

andΣzi
is the posterior covariance ofzi.

As it turns out, this additional approximation only affectsthe E-step equations which are

summarized as follows:

E-Step :

1TΣzi
1 =

(
d∑

m=1

ψzm

)[

1−
2ϕ(ξi)

si

(
d∑

m=1

ψzm

)]

σ2
zim = ψzm

(

1−
2ϕ(ξi)

si

ψzm

)

〈zim〉 = bmfm(xi) +
ψzm

si

(yi

2
− 2ϕ(ξi)b

T f(xi)
)

wheresi = 1 + 2ϕ(ξi)1
TΨz1. The estimation of eachξi can be done by differentiating the
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expected log likelihood with respect to eachξi:

∂

∂ξi
〈ln p(y,θ|X)〉 =

∂

∂ξi

[

ln g(ξi) +
yi1

T 〈zi〉 − ξi
2

− ϕ(ξi)
(
1T
〈
ziz

T
i

〉
1− ξ2

i

)
+ constξi

]

= 1− g(ξi)−
1

2
+ 2ξiϕ(ξi)

︸ ︷︷ ︸

=0

−
∂ϕ(ξi)

∂ξi

(
1T
〈
ziz

T
i

〉
1− ξ2

i

)

Hence the likelihood is maximized by solving the following:

∂ϕ(ξi)

∂ξi

(
1T
〈
ziz

T
i

〉
1− ξ2

i

)
= 0

which has solutions at∂ϕ(ξi)/∂ξi = 0 and atξ2
i = 1T

〈
ziz

T
i

〉
1. One can show that the solution

∂ϕ(ξi)/∂ξi = 0 occurs for the valueξi = 0, and actually corresponds to aminimumrather

than a maximum of the expected log likelihood. Hence we have the admissible solutions forξi

being:

ξi = ±
√

1T 〈ziz
T
i 〉1

The sign ofξi can be chosen arbitrarily, since the likelihood is an even function ofξi, i.e. both

solutions result in the likelihood taking the same maximal value (c.f. Fig. 8). Importantly, the

O(d) complexity of all update equations is preserved even in the extension to categorical output

data, making backfitting for classification an equally robust and efficient tool as its regression

counterpart.

Bayesian extension: Given that the functional approximation of Eq. (39) allows us to re-

tain the conjugacy necessary for an analytical treatment, the Bayesian extensions of Sec. 4 are

straightforward to apply to our classification model. For the case in which we have a common

shared precision parameterα across all regression parameters (c.f. Sec. 4.1), thebm variables
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still have a posterior Gaussian with the mean update as follows:

〈bm〉
(n+1) =

( ∑N

i=1 fm(xi)
2

∑N

i=1 fm(xi)2 + ψzm 〈α〉

)

〈bm〉
(n)

+
ψzm

∑N

i=1
1
si

(
yi

2
− 2ϕ(ξi)〈b〉

(n)T
f(xi)

)

fm(xi)
(
∑N

i=1 fm(xi)2 + ψzm 〈α〉
)

For the case in which we have an individual precision parameter αm over each regression

parameter (c.f. Sec. 4.2), thebm variables again have a posterior Gaussian with the mean update

as follows:

〈bm〉
(n+1) =

( ∑N

i=1 fm(xi)
2

∑N

i=1 fm(xi)2 + ψzm 〈αm〉

)

〈bm〉
(n)

+
ψzm

∑N

i=1
1
si

(
yi

2
− 2ϕ(ξi)〈b〉

(n)T
f(xi)

)

fm(xi)
(
∑N

i=1 fm(xi)2 + ψzm 〈αm〉
) (41)

Importantly, the extension of VBLS to categorical output data preserves theO(d) complexity

of all update equations.

5 Extensions to Nonlinear Regression

While we derived VBLS in Sec. 4 in the context of a linear model, it can also be used for

supervised learning in nonlinear settings. In this section, we first discuss the Relevance Vector

Machine (RVM), a sparse Bayesian learning algorithm that operates in a framework similar to

generalized linear regression.

The Support Vector Machine (SVM), e.g., (Cortes & Vapnik, 1995), is a common and popu-
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lar method for classification problems, but it can be extended to regression, resulting in Support

Vector regression (SVR). We show that the RVM serves as an alternative to SVR and can be

derived as a highly efficient sparse algorithm with VBLS at itscore. In Sec. 6, we illustrate

the computational advantages of this VBLS-RVM algorithm on experimental synthetic and real

data sets.

5.1 The Relevance Vector Machine (RVM)

Introduced by Bishop and Tipping (2000) and Tipping (2001), the Relevance Vector Ma-

chine (RVM) uses the following generative model:

y(x;b) =
N∑

i=1

bik (x,xi) + ǫ (42)

wherek (x,xi) is a bivariatekernelfunction. The RVM createsN basis functions by centering

a kernel function on each training data pointxi, and these are linearly combined by a regression

vectorb to generate the prediction.

As in SVR, the goal of the RVM is accurate prediction of the target function while retain-

ing as few basis functions as possible in the linear combination. That is to say, one hopes that

the regression vectorb remains as sparse as possible (as in the framework of sparse Bayesian

learning). This can be achieved by introducing prior distributions over each element ofb, as

discussed in Sec. 4.2. The RVM’s success at sparsifying the regression solution hinges on the

fact that this form of prior favors solutions that lie along the hyper-spines of the distribution.

The introduction of hyperparameters makes it impossible toobtain exact analytical posteriors

(i.e., they are intractable). Nevertheless, we can obtain successful approximate solutions (albeit
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iteratively) by using the Laplace method (Tipping, 2001) orfactorial variational approxima-

tions (Bishop & Tipping, 2000). Both these approximations require hyperparmeter updates for

α that need re-estimation of the posterior covariance and mean of b as:

Σb =

(

diag(〈α〉) +

〈
1

ψy

〉 N∑

i=1

kik
T
i

)−1

(43)

µb =

(
1

ψy

)

Σb

N∑

i=1

kiyi (44)

whereki ≡ [k (x1,xi) , . . . , k (xN ,xi)]
T andψy is the noise variance in the targetsy. This

requires anO(N3) Cholesky decomposition after each hyperparameter update. As the num-

ber of data samples increases, the RVM faces an explosion in the computational requirements,

similar to that observed in Gaussian processes and support vector machines. Indeed, as a gen-

eralized linear problem, each new data point adds an extra “dimension” to the input. Tipping

(2001) mentions several enhancements to the algorithm including pruning of unneeded basis

functions, which may help speed up the RVM estimation. However, the crux of the problem

remains that the expensive linear regression step must be performed after each hyperparameter

update.

5.2 Variational Bayesian Least Squares RVM (VBLS-RVM)

We have so far not commented on the nature of the basis functionsfm(x) in our model. Let

us now switch to the RVM framework described above, whereN basis functions are created by

centering a bivariate kernel functionk(x,x′) on each individual data point. This implies:

fm(·) = k(·,xm)
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where1 ≤ m ≤ d andd = N . Notice that this transformation makes our VBLS model of

Fig. 6(a) equivalent to the RVM model discussed in Sec. 5.1, with the notable difference that

VBLS offers a significant advantage over the standard RVM in computational complexity. Note

that while the computational complexity of a VBLS update is linear in the dimensionality of

the problem, it is also linear in the number of data points i.e. O(Nd). When cast into the RVM

framework, usingd = N decreases the complexity from theO(N3) of RVM to O(N2). In

particular, we would like to emphasize the following:

• At eachupdate of theαm hyperparameters, the RVM requires anO(N3) Cholesky de-

composition to re-estimate the regression parameters, while discarding the estimate at the

previous iteration. In the VBLS-RVM, however, the existing estimate of the regression

parameters provides a good starting estimate, allowing theupdate to complete in just a

handful ofO(N2) iterations (∼ 10 iterations were sufficient in our simulations). The

savings in computation are especially evident when the number of data points (and hence

the effective dimensionality) is large and when the hyperparameters require many updates

before convergence.

• In the initial computations within the graphical model, it seems wasteful to spend large

amounts of computation on estimating parameters accurately, when surrounding param-

eters (and hyperparameters) have not converged. One can structure the VBLS updates to

work with partially converged estimates, such that the brunt of computation is only ex-

pended to accurately estimate a variable when one is more confident about the variables

in its Markov blanket.

As an illustrative example, Fig. 9 shows results from using VBLS-RVM to fit a toy data

set. This synthetic data set was generated using the1-dimensional sinc functionsinc(x) =
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sin(x)/x, using the Gaussian kernel:

k (xi, xj) ≡ exp
{
−λ (xi − xj)

2}

whereλ > 0.

Even though VBLS-RVM is an order of magnitude faster than the standard RVM, it suffers

no penalty in generalization error or in its ability to sparsify the set of basis vectors. More

details on this are presented in Sec. 6.3 where we compare thegeneralization performance of

VBLS-RVM on a sinc function approximation problem to other competitive nonlinear regres-

sion techniques such as the RVM, SVR, Gaussian Process (GP) regression (Williams & Ras-

mussen, 1996) and Locally Weighted Projection Regression (LWPR) (Vijayakumar & Schaal,

2000).

Note that Tipping proposes an optimization of the distance metric λ, based on gradient

ascent in the log likelihood (Tipping, 2001). We can also compute such a gradient for VBLS-

RVM as:

∂ 〈log p(y,Z|X)〉

∂λ
=

N∑

j=1

bj
ψzj

N∑

i=1

(〈zij〉 − bjkij) (xi − xj)
2 kij (45)

wherekij = k (xi, xj). Based on our experience, however, we caution against unconstrained

maximization of the likelihood, especially over distance metrics. Instead, we recommend the

route taken in the Gaussian process community: treat these variables as hyperparameters and

place prior distributions over them. Since exact solutionsare typically intractable, we can either

optimize them b usingmaximum a posterioriestimates (MacKay, 1999) or by Monte Carlo

techniques (Williams & Rasmussen, 1996).
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Note that there are several optimizations suggested by Tipping (2001) and Tipping and Faul

(2003). These include pruning the basis functions when their precision variables indicate that

they are unneeded and adopting agreedy(but potentially suboptimal) strategy in which the

algorithm starts with a single basis function and adds candidates as necessary. We emphasize

that our implementation of VBLS-RVM performs neither of these optimizations, although they

are easy to introduce into our framework as well.

In the next section, we demonstrate experimentally on synthetic and real data sets that

VBLS-RVM possesses asignificant computational advantage over the RVM, while retaining

the accuracy and sparseness of the standard RVM. It should benoted that in the RVM, each

update of the hyperparameters requires a subsequent full matrix inversion to compute the pos-

terior distribution over the regression parameters. In contrast, VBLS-RVM requires no matrix

inversion. Moreover, each update of the hyperparameters causes the distribution over the re-

gression coefficients to shift only by a small amount. VBLS-RVM performs especially well in

these circumstances since it can use the current (partiallygood) solution and can update the re-

gression coefficient distributions within a very small number of iterations rather than requiring

a complete recalculation of the matrix inverse.

6 Experimental Results

We evaluate VBLS on synthetic and real data sets on both regression and classification

problems, comparing it to other standard methods in order toshow its competitive performance

and computational advantage. Firstly, we run VBLS on a synthetic data set where “ground

truth” is known, in order to better evaluate its performancein a controlled setting. Then, we

apply VBLS, along with other standard methods, on neurophysiological data sets. Specifically,
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we would like to predict the electromyographic (EMG) activity of muscles from the neural

data recorded in the primary motor (M1) cortices of monkeys,under the assumption that the

relationship between neural and muscle activity is approximately linear.

We then move on to benchmark regression and classification data sets. We evaluate the

generalization ability of VBLS-RVM along with state-of-the-art regression tools on popular

nonlinear regression benchmark data sets. The algorithms discussed in Sec. 2 are meant for

linear regression problems and, hence, are unsuitable for these nonlinear regression benchmark

data sets. Instead, we will compare VBLS-RVM to common nonlinear regression methods

such as the RVM, SVR, Gaussian process (GP) regression (Williams & Rasmussen, 1996) and

Locally Weighted Projection Regression (LWPR) (Vijayakumar &Schaal, 2000).

Finally, we evaluate VBLS-RVM on benchmark classification problems. We compare the

performance of VBLS-RVM to that of standard classification methods such as the RVM classi-

fier and the SVM. Since the benchmark data sets that we consider involve two-class problems,

we also include logistic regression for comparison since itis suited for classification problems

with only two classes. Even though the algorithms surveyed in Sec. 2 are for regression prob-

lems and could be augmented, making them suitable for classification problems by passing the

outputs through a sigmoid function, we omit comparisons to them, choosing to draw compar-

isons between classifiers instead.
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6.1 Synthetic Data

6.1.1 Data sets

We generated random input training data consisting of 100 dimensions, 10 of which were

relevant dimensions. The other 90 were either irrelevant orredundant dimensions, as we ex-

plain below. Each of the first 10 relevant input dimensions was drawn from a Normal(0, 1)

distribution. We then applied a random 10-dimensional rotation matrix to create input data with

dimensions that are linear combinations of the original (unrotated) 10-dimensional data. The

output data was then generated from the relevant input data using the vectorb ∈ ℜ10×1, where

each coefficient ofb, bm, was drawn from a Normal(0, 100) distribution. Noise of varying

levels was added to the outputs.

Noise in the outputs was parameterized with the coefficient of determination,r2, of standard

linear regression, defined as:

r2 =

(
σ2

y − σ
2
res

)

σ2
y

whereσ2
y is the variance of the outputs andσ2

res is the variance of the residual error. We added

noise scaled to the variance of the noiseless outputsȳ such thatσ2
noise = cσ2

ȳ, wherec = 1
r2 − 1.

Results are quantified as normalized mean squared errors (nMSE), that is, the mean squared

error on the test set normalized by the variance of the outputs of the test set. Note that the best

normalized mean squared training error that can be achievedby the learning system under this

noise level is1 − r2, unless the system overfits the data. We used a value ofr2 = 0.8 for high

output noise and a value ofr2 = 0.9 for lower output noise.

A varying number of redundant data vectors was added to the input data, generated from ran-
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dom convex combinations of the 10 relevant vectors. Finally, we added irrelevant data columns,

drawn from a Normal(0,1) distribution, until a total of 100 input dimensions was reached, gen-

erating training input data that contained irrelevant and redundant dimensions.

We created the test data set in a similar manner except that the input data and output data

were left noise-free. For our experiments, we considered a synthetic training data set with

N = 1000 data samples and a synthetic test data set with20 data samples. We examined the

following four different combinations of redundant,r, and irrelevant,i, input dimensions in

order to better analyze the performance of the algorithms ondifferent data sets:

1. r = 0, i = 90 (all the 90 input dimensions are irrelevant)

2. r = 30, i = 60

3. r = 60, i = 30

4. r = 90, i = 0 (all the 90 input dimensions are redundant)

6.1.2 Methods

We compared VBLS to four other methods that were previously described in Sec. 2: i) ridge

regression, ii) stepwise regression, iii) PLS regression and iv) LASSO regression. For ridge

regression, we introduced a small ridge parameter value of10−10 to avoid ill-conditioned matrix

inversions. We used Matlab’s “stepwisefit” function to run stepwise regression. The number of

PLS projections for each data set fit was found by leave-one-out cross-validation. Finally, we

chose the optimal tuning parameter in LASSO regression using k-fold cross-validation.
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6.1.3 Results

For evaluation, we calculated the prediction error on noiseless test data, using the learned

regression coefficients from each technique. Results are quantified as normalized mean squared

errors (nMSE). Fig. 10 shows the average prediction error for noiseless test data, given training

data where the output noise is either low (r2 = 0.9) or high (r2 = 0.8).

All the algorithms were executed on 10 randomly generated sets of data. The predictive

nMSE results reported in Fig. 10 were averaged over the 10 trials. Note that the best training

nMSE values possible under the two noise conditions are 0.1 for the low noise case and 0.2

for the high noise case. The training nMSE values were omitted for both graphs, since all

algorithms attained training errors that were around the lowest possible values.

From Figs. 10(a) and 10(b), we see that regardless of output noise level, VBLS achieves

either the lowest predictive nMSE value or a predictive nMSEvalue comparable to that of

the other four algorithms. In general, as the number of redundant input dimensions increases

and the number of irrelevant input dimensions decreases, the prediction error improves (i.e., it

decreases). This may be attributed to the fact that redundancy in the input data provides more

“information”, making the problem easier to solve.

The performance of stepwise regression degrades as the number of redundant dimensions

increases, as shown in Figs. 10(a) and 10(a), due to its inability to cope with collinear data.

LASSO regression appears to perform quite well, compared toPLS regression and ridge re-

gression, confirming previously published results that it can produce robust sparse regression

solutions.

In summary, we can confirm that VBLS performs very well—as wellas or better than classi-

cal robust regression methods (such as LASSO) on synthetic tests. Interestingly, PLS regression
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and ridge regression are significantly inferior in problemsthat have a large number of irrelevant

dimensions. Stepwise regression has deteriorated performance as soon as co-linear inputs are

introduced.

6.2 Predicting EMG Activity from Neural Firing

6.2.1 Data sets

We analyzed data from two different neurophysiological experiments (Sergio & Kalaska,

1998; Kakei, Hoffman, & Strick, 1999) involving monkeys trained to perform different arm

movements while having their M1 neural firing rates and EMG activity recorded. The first ex-

periment (Sergio & Kalaska, 1998) consisted of a monkey thatapplied either a movement or

isometric force to a manipulandum in a center-out task in eight directions, equally spaced in a

horizontal planar circle. They recorded neural activity of71 M1 neurons in all conditions, along

with the EMG outputs of 11 muscles, resulting in 2320 data samples for each neuron/muscle

pair. In the second experiment (Kakei et al., 1999) a monkey was trained to perform eight differ-

ent combinations of wrist flexion-extension and radial-ulnar movements while in three different

arm postures. The data set consisted of neural data of 92 M1 neurons that were recorded at all

three wrist postures, along with the resulting EMG outputs of 7 contributing muscles, resulting

in 2616 data samples for each neuron/muscle pair. In all experiments, each data sample con-

sisted of the average firing rates from a particular neuron (averaged over a window of10msec)

and the corresponding EMG activation from a particular muscle.

The goal of the analysis was to determine how well VBLS compares to other techniques

when reconstructing EMG data of each muscle. The relationship between neural and muscle
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activity is assumed to be linear, such that the basis functions in VBLS are simply a copy of the

respective input dimensions, i.e.fm(x) = xm.

6.2.2 Methods

To analyze the data set, we applied VBLS, as described in Sec. 4.2, along with a selection

of methods previously discussed in Sec. 2: i) ridge regression, ii) stepwise regression, iii) PLS

regression and iv) LASSO regression. We omitted the other methods due to unsuitable model

assumptions or computationally expensive procedures.

A baseline comparison of good EMG construction was obtainedthrough a limited combi-

natorial search over possible regression models. This approach served as our baseline study

(referred to ModelSearch in figures) and served as our “gold-standard”, with a particular model

being characterized by the subset of neurons used to predictthe EMG data. For a data set with

n neurons, the number of possible models that exist for a particular muscle is

n∑

m=1






n

m




 = 2n − 1

since the order of contributing neurons is not important (only combinations not permutations

of neurons are considered). The number of possible models given in the expression above is

too large for an exhaustive search. As a result, for ModelSearch, we considered all possible

combinations of neurons of up toa subsetof the total number of neurons in the data set. For

example, we considered onlypossible combinations of up to 20 neuronsfor the Sergio and

Kalaska (1998) data set to give220 − 1 possible models instead of the full, exhaustive271 − 1

possible models to search over. Even so, ModelSearch required several weeks of computation



Ting, D’Souza, Vijayakumar, Schaal Efficient High-Dimensional Regression 54

on a 30-node cluster computer. We determined the optimal predictive subset of neurons using

cross-validation4 and used Ordinary Least Squares regression to calculate thetraining and gen-

eralization performance. For both the Sergio and Kalaska (1998) and Kakei et al. (1999) data

sets, the cross-validation procedure used in baseline study (ModelSearch) was used to determine

the optimal subset of neurons and was done in the context of the behavorial experiments and not

in a statistically randomized way. While we realize cross-validation has a danger of overfitting,

the purpose of ModelSearch is to serve as a method for comparison to evaluate the performance

of all algorithms and to give some indication of a baseline performance that is achievable using

a crude combinatorial search of a subset of models. We compared ModelSearch with ridge

regression, stepwise regression, PLS regression, LASSO regression and VBLS. We used the

same validation sets for these five algorithms as in ModelSearch in order perform a consistent

comparison.

For ridge regression, we introduced a small ridge parametervalue of10−10 to avoid ill-

conditioned matrix inversions. We used Matlab’s “stepwisefit” function for stepwise regression.

The number of PLS projections for each data fit was found by leave-one-out cross-validation.

Finally, the optimal value of the open parameter in LASSO regression was chosen using cross-

validation.

The baseline method ModelSearch identified a subset of neurons as relevant. Table 1 shows

the percentage match of relevant neurons found by the algorithms, relative to the relevant neu-

rons found by ModelSearch. The final set of relevant neurons used in Table 1 was reached by

4 8-fold cross-validation was used for the Sergio and Kalaska(1998) data set (with a training

set consisting of50% of data and two test sets containing25% of the data each). 6-fold cross-

validation sets were used for the Kakei et al. (1999) data set(with the data split evenly between

a training set and a test set).
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each algorithm (except VBLS) by taking the common neurons found to be relevant over the 8

cross-validation sets for the Sergio and Kalaska (1998) data set (or 6 cross-validation sets for

the Kakei et al. (1999) data set). The relevant neurons foundby VBLS and reported in Table 1

were obtained by using the entire data set since VBLS does not require the data be divided into

separate training or test sets.

Inference of relevant neurons in PLS was based on the subspace spanned by the PLS pro-

jections, while relevant neurons in VBLS were inferred from the magnitude of theα vector

(the correspondingαm of an irrelevant input dimensionm would have an extremely large value

compared to theα values of the relevant dimensions such that we can use a threshold value

to find irrelevant dimensions)5. The number of relevant neurons from stepwise regression and

LASSO regression were determined from the inputs that were included in the final model. Note

that since ridge regression retained all input dimensions,this algorithm was omitted in relevant

neuron comparisons.

6.2.3 Results

Fig. 11 shows that EMG traces appear to be, in general, well predictable from M1 neural

firing. In particular, VBLS had a generalization error comparable to that of the baseline study.

Fig. 12 illustrates the EMG trace predicted by VBLS for a sample muscle (muscle 7) from

the Sergio and Kalaska (1998) neural data set. Fig. 11(b) shows that all algorithms achieve

5If we choose to factor the marginal posterior so thatQ(Z,b, α) = Q(Z)Q(b, α) such that

the marginal distribution forb is a Student-t distribution, then we can perform t-tests on the

regression coefficients to find relevant dimensions, using asignificance ofp < 0.05. Please

refer to Ting et al. (2005) for more details on this.
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similarly low prediction errors on the Kakei et al. (1999) neural data set. On the Sergio and

Kalaska (1998) data set, however, ridge regression, stepwise regression, LASSO regression

and PLS performed far worse, with ridge regression attaining the worst error. The difference

between prediction errors on both neural data sets suggeststhat the Sergio and Kalaska (1998)

neural data set is somehow much richer and hence, more challenging to analyze.

Note that the average number of relevant M1 neurons found by VBLS (averaged over all 11

muscles in the Sergio and Kalaska (1998) data set and averaged over all 7 muscles in the Kakei

et al. (1999) data set) was slightly higher6 than ModelSearch. This is hardly surprisingly, given

that ModelSearch didnotconsider all possible combinations of neurons in both neural data sets.

In contrast, VBLS considered all 71 neurons in the Sergio and Kalaska (1998) data set and all

92 neurons in the Kakei et al. (1999) data set.

Table 1 attempts to compare how the various methods fare in terms of finding relevant

neurons, using the results of ModelSearch as a baseline comparison. As a result, a higher

percentage match in the table does not necessarily mean thatthe method should result in a

lower prediction error. Regardless, we see from Table 1 that the relevant neurons identified by

VBLS coincided at a very high percentage with those of ModelSearch, while PLS regression

and stepwise regression had inferior outcomes.

LASSO regression matched a high percentage of relevant M1 neurons in the Kakei et al.

(1999) data set, but failed to perform as well on the Sergio and Kalaska (1998) data set. As an

aside, it is possible to use VBLS as a pre-processing step to reduce the search space of possible

models for ModelSearch to consider.

6More details on the neural interpretation of this analysis can be found in Ting et al., (2005,

2008).
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The consistent and good generalization properties of VBLS onall neural data sets, as shown

in Figs. 11(a) and 11(b), suggests that the Bayesian approachof VBLS sufficiently regularizes

the participating neurons such that no overfitting occurs, despite finding a larger number of

relevant neurons. The performance of VBLS on these particularly difficult data sets shows

that it is a viable alternative to traditional generalized linear regression tools. Even with the

additional Bayesian inference for ARD, it maintains its algorithmic efficiency since no matrix

inversion is required. While VBLS is an iterative statisticalmethod, which performs slower

than classical “one-shot” linear least squares methods (i.e., on the order of several minutes for

the data sets in our analysis on a standard PC7), it achieved comparable results with our baseline

combinatorial model search, which took weeks on a cluster computer.

6.3 Benchmark Regression Problems

6.3.1 Data sets

To evaluate the generalization ability of VBLS-RVM, we compared it to other state-of-the

art nonlinear regression tools on the following benchmark datasets:

• the synthetic sinc data set (generated in the same way as Tipping (2001))

• the Boston housing data set

• the Abalone data set8

7Pentium IV class machine, 1.7GHz

8Both the Boston housing and Abalone data sets are available from the UCI repository.
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• the Netflix prize data set9

The sinc data set was constructed to have 100 uniformly-spaced samples in[−10, 10] and

uniform noise in[−0.2, 0.2] was added to the targets. The Boston housing data set had 14

attributes and was split randomly, in 10 different random splits, into a training set of 404 samples

and a test set of 102 samples (e.g., 20% of data used for test and the rest for training). The

Abalone data set had 10 attributes and was downsampled to 10 disjoint sets, with also 20% of

the data randomly selected for test and the remainder for training (i.e., 3327 samples for training

and 850 samples for test).

The Netflix prize data set consisted of 17770 movies and 480189 customers, with each

movie having reviews submitted by a small subset of customers. Each review consisted of a

rating (from 0 to 5 stars) and the date that the review was made. Customers were identified

with a unique customer identification number. Movies were also identified with a unique movie

identification movie, with titles of movies additionally available. The data set was downsampled

so that only 355 movies and 1412 customers were randomly selected.

We formulated the Netflix prize problem as a linear regression problem in order to see how

simple linear methods performed on a real-world, complex data set and also to see compare

VBLS to the other methods. The goal was to predict the rating that a customerc gives to a

moviem, given we have access to all the ratings moviem has received and all the ratings

customerc has made. The downsampled data consisted of 7249 samples, with each sample

consisting of a 1767-dimensional input vector (i.e., all the ratings that moviem received from

each customer and all the ratings made by customerc—this gives1412 + 355 or 1767 elements

in the input vector) and an output scalar (i.e., the number ofstars that customerc gave to movie

9The data set is available from http://www.netflixprize.com.
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m). 10% of the downsample data was used for test, while the remaining was used for training

(i.e., 6524 training samples and 725 test samples).

6.3.2 Methods

For all the benchmark data sets (except for the Netflix prize data set), we compared VBLS-

RVM with other algorithms suited for nonlinear regression such as the standard RVM, SVR10,

Gaussian process (GP) regression and Locally Weighted Projection Regression (LWPR). Both

VBLS-RVM and the RVM used Gaussian kernels with distance metrics optimized by 5-fold

cross-validation. The Gaussian process regression algorithm used a radial basis function (RBF)

covariance function with automatic hyperparameter optimization.

For the Netflix prize problem, we evaluated the following linear methods that were previ-

ously evaluated in Secs. 6.1 and 6.2: i) ridge regression, ii) stepwise regression, iii) PLS regres-

sion, iv) LASSO regression (using the Gauss-Seidel method of Shevade and Keerthi (2003) in

order to accommodate the size of the data) and v) VBLS. Note that the number of optimal pro-

jection directions to use in PLS regression (i.e., the parameterK described in Sec. 2.1.6) was

set to20 after much user tuning—numbers larger than this took far toolong to run. Addition-

ally, the number of steps for stepwise regression was cappedto 100. Larger step values were

explored but the running time was excessively long with poorer generalization performance.

10RVM and SVR results adapted from Tipping (2001)
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6.3.3 Results

Table 2 shows the normalized mean squared errors on the test sets averaged over 10 experi-

mental trials. We can see that VBLS-RVM provides an extremelycompetitive solution in terms

of generalization ability when compared to other popular regression methods.

In order to examine the level of “sparsification” of the set ofbasis functions, we compared

the average number of basis functions retained by the RVM, SVR and VBLS-RVM since these

three methods had the ability to retain “relevant” samples.Table 3 shows the average number

of relevant samples (known as “relevant vectors” in the RVM)retained in the final solution

(averaged over all 10 experimental trials) on the sinc, Boston housing and Abalone data sets.

The above experiments demonstrate that VBLS-RVM is a competitive regression solution

when compared to other current state-of-the-art statistical methods, both in its generalization

ability and in its efficacy as a sparse Bayesian learning algorithm. However, the main advantage

of VBLS-RVM is in its computation time, relative to the RVM. Wecompare the execution time

of the RVM to VBLS-RVM in order to examine how much speed is gained by incorporating

VBLS into the RVM. Table 4 gives the average execution time in seconds required by the RVM

and VBLS-RVM for convergence of their regression parameter estimates on the sinc, Boston

housing and Abalone data sets. The table also shows the number of training samplesNtraining,

the number of test samplesNtest and the dimensionality of the inputsd. Note that the number of

O(N2) updates tob per update cycle of the hyperparameters is very small (around 10 updates),

since the solution from the previous update cycle is a very good starting point for the iterations

of the next cycle. The results demonstrate that the RVM can significantly gain from the iterative

nature of the VBLS generalized linear regression procedure.

The baseline method, Cinematch, used for comparison in the Netflix Prize competition,
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reported a predictive rmse of 0.9514 on a quiz (unknown) testsubset11. Table 5 shows the

predictive root mean squared error values (rmse) for all fivelinear methods evaluated. We can

see that the best performance of a linear method is actually not so far off from the baseline

performance of Cinematch—although the test sets used are different and so, such a comparison

can not be fairly made. VBLS had a comparable performance to LASSO regression, but took a

longer time to train than the other linear methods. However,unlike the other methods—with the

exception of LASSO regression—whose training times were reportedafter the optimal values

of open parameters were set/determined, VBLS did not have anyopen parameters to be set or

cross-validated and performed “out of the box”.

6.4 Benchmark Classification Problems

6.4.1 Data sets

We also evaluated the classification accuracy of the RVM, SVMand VBLS-RVM on some

benchmark data sets. To facilitate comparison, we trained and tested VBLS-RVM on exactly the

same data used in Tipping (2001), along with an additional real-world large-scale data set.The

data sets used for comparison include the following:

• Ripley’s synthetic data (Ripley, 1996)

• the Banana data set (Rätsh, Onoda, & M̈uller, 2001)

• the Pima Diabetes data set

11 The Netflix Prize competition offers a grand prize for a rmse achieved that is≤ 0.8563
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• a binary classification problem of the MNIST database of handwritten digits12

All data sets presented a two-class classification problem.

Ripley’s synthetic data was generated, as described in Tipping (2001), in two dimensions

from mixtures of two Gaussians with the classes overlappingsuch that the Bayes error is around

8%. A training set of100 samples were randomly chosen from Ripley’s original250-sample

training data set. The test error was computed using a test set of 1000 samples. The Banana data

set was taken from the online repository and consisted of 100training and test splits provided

by Rätsch et al. Each training set had400 training samples and each test set had4900 samples.

Both had 2-dimensional inputs. The Pima Diabetes set had7-dimensional inputs and was split

into a training set with200 samples and a test set with332 test samples.

Finally, we formulated the MNIST handwritten digit data setinto a binary classification

problem, for the purpose of distinguishing the digit 0 from all other digits (i.e., a binary clas-

sification problem). The complete MNIST database consists of binary images of handwritten

digits (numbered 0 to 9). It has 60000 training samples, 10000 test samples and an input di-

mensionality of 784. We conducted experiments with varyingsizes of training data in order

to evaluate the performance and run times of various methods. For example, we considered

training set sizes of 1000, 3000, 5000 and 10000 samples and test sets of 500 samples.

12 The MNIST data set is publicly available from http://yann.lecun.com/exdb/mnist. It is a

popular benchmark data set that has been analyzed in variousforms by many (e.g., (Lecun,

Bottou, Bengio, & Haffner, 1998; Keerthi, Chapelle, & DeCoste, 2006)).
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6.4.2 Methods

We compared VBLS-RVM to a RVM classifier, the SVM and logistic regression. As men-

tioned previously, the list of algorithms surveyed in Sec. 2are designed for regression problems.

Though we could augment them and make them suitable for classification by passing the out-

puts through a sigmoid function, we omit them, choosing, instead, to make comparisons to

“native” classifiers.

The RVM classifier used a Gaussian kernel,k(xm,xn) = exp (−r−2 ‖ xm − xn ‖
2), with

the width parameterr set to0.5. The error/margin trade-off parameters of the SVM were tuned

using 5-fold cross-validation. Both VBLS-RVM and the RVM used Gaussian kernels with

distance metrics optimized by 5-fold cross-validation.

For the MNIST data set, we evaluated the following methods: i) the primal SVM of Keerthi

et al. (2006), designed for fast performance on large-scaledata sets, ii) the fast RVM of Tip-

ping and Faul (2003), iii) VBLS-RVM and iv) the original RVM ofTipping (2001). Other

competitive classifiers, aside from the primal SVM (Keerthiet al., 2006), include Sparse Multi-

nomial Logistic Regression (Krishnapuram, Carin, Figueiredo, & Hartemink, 2005) and the

doubly regularized SVM (Wang, Zhu, & Zou, 2006), to list a few. Note that the original RVM

does not scale well to large-scale data sets due to itsO(N3) computational complexity (per EM

iteration).

6.4.3 Results

Table 6 shows the classification accuracies of all the algorithms on the benchmark data sets.

Results for the Ripley data set were averaged over 10 experimental trials, while the results for
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the Banana data set were averaged over the first 10 training andtest splits. The classification

errors reported for the Pima Diabetes set was for the given training and test sets. We see from

the table that the classification accuracy of VBLS-RVM is comparable to and as competitive as

that of the RVM classifier, SVM and logistic regression.

Table 7 reports the classification percentage accuracies ontest sets, as well as the running

times for each method. The computation time of VBLS was reported with and without the

pre-processing step (i.e., the one-time step where the training and test design matrices of the

RVM’s basis vectors are constructed. The computational time of VBLS with pre-processing is

shown in brackets. The construction of the training and testmatrices (which have dimensions

Ntraining×Ntraining andNtraining×Ntest, respectively13 takes the bulk of the computation time for

VBLS. As such, it is not surprising that VBLS-RVM takes longer computational times than the

fast RVM and SVM. The VBLS-RVM could be modified to accommodatelarge-scale data sets

by greedily adding basis vectors to the design matrix (similar to that done in (Tipping & Faul,

2003)).

On average, the fast RVM of Tipping and Faul (2003) performs faster than the RVM and the

VBLS-RVM—which is unsurprising, given the modified RVM adds basis vectors in a greedy

fashion, potentially converging on a sub-optimal model. Indeed, we see in Table 7 that the fast

RVM is not necessarily the best performing. However, the speed advantage that VBLS-RVM

offers over the standard RVM is easily observed in the table.

13 Note thatNtraining andNtest are the number of training and test samples, respectively.
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7 Discussion

For efficient learning and feature selection, we introduce anew Bayesian technique for lin-

ear regression analysis with automatic regularization called Variational Bayesian Least Squares,

focusing on scenarios with large samples of high-dimensional data that are commonly found in

the application domains of robotics and brain-machine interfaces. Although derived in a linear

regression model, VBLS can also be extended to nonlinear regression and classification settings,

as done, for example, in VBLS-RVM. VBLS is competitive with classical linear regression and

other sparse regression techniques and, furthermore, doesnot require any manual parameter

tuning, giving it a “black box” statistical property. The iterative nature of VBLS makes it suit-

able for real-time, incremental learning (when decisions need to be made quickly) and allows it

to be embedded in other iterative methods to offer a speed-upadvantage.

One issue is the effect of the variational approximation used in the algorithm on the quality

of function fit. One could assume, for example, that VBLS may tend to overfit, since factorial

approximations to a joint distribution are known to create more peaked distributions. However,

since the factorial approximation is made over the regression coefficients, a more peaked dis-

tribution ensures only that the regression coefficients arecloser to zero, making VBLS slightly

pessimistic and unlikely to overfit.

VBLS can also be applied to other problems such as parameter identification in noisy high-

dimensional regression (Ting, D’Souza, & Schaal, 2006), growing mixtures of experts or lo-

cally weighted regression in high-dimensional spaces. In these scenarios, use of VBLS can

potentially help overcome numerical matrix inversion operations that may otherwise make a al-

gorithm too computationally expensive to be viable for high-dimensional or real-time learning.

We are currently pursuing such research directions as future work.
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Figure 1: Graphical model for linear regression. Note the fan-in, which causes the estimates of

the individual regression coefficientsbm to become coupled in the posterior.
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Figure 2: This figure shows the bounding boxes of the data stored at level 2 (top figure) and

level 4 (bottom figure) nodes of a KD-tree. The tree is createdby recursively splitting the

hyper-rectangles along the median of longest dimension of the enclosed data. Bounding box

information (as well as other statistics) are cached at eachnode and help speed up querying the

structure.
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Figure 3: The top figure shows the nodes at root, first and second levels of a ball tree (dotted,

dashed and solid balls respectively). The bottom figure illustrates the triangle inequality used

to derive computationally efficient bounds on the distance between an arbitrary query point and

the points within a ball.
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Figure 4: We modify the original graphical model for generalized linear regression by inserting

hidden variableszim in each branch of the fan-in. This modified model can be solvedusing the

EM framework to derive a probabilistic version of backfitting.
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Figure 5: By associating a single Gamma distributed precision with the regression vector,

we create a marginal prior overb that favors minimum-norm solutions, similar to shrinkage

methods such as ridge regression.
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(b) Marginal prior overb

Figure 6: By associating an individual Gamma distributed precision with each regression

coefficient, we create a marginal prior overb that favors sparse solutions which lie along the

(hyper)-spines of the distribution.
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Figure 7: We can relax the assumption of factorizationQ(b)Q(α) between the regression coef-

ficients and their precision variables, by modifying the graphical models as shown in this figure.

The marginal posterior distribution over the regression coefficientsb can now be analytically

derived as a Student t-distribution.
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Figure 8: The left panel shows the logistic function (solid thick line), and two approximations

with the variational parameters set toξ = 3 (dashed line), andξ = 7 (solid thin line). The

points of tangency between the true function and the approximation are circled. The right panel

shows the same plots on a log scale.
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Figure 9: The VBLS-RVM solution to fitting data from the “sinc”function. Note that out of

50 data points, only 5 are considered “relevant”. The retained basis functions (corresponding to

the relevant points, indicated by black circles) are shown superimposed.
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Figure 10: Average normalized mean squared prediction error for synthetic 100 input-

dimensional data, averaged over 10 trials. The number of redundant dimension is denoted

by r and the number of irrelevant dimensions isi.
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Figure 11: Average normalized mean squared error for M1 neurons, averaged over all cross-

validation sets and over all muscles. 6-fold cross-validation was used for the Kakei et al. (1999)

M1 neural data set, and 8-fold cross-validation was used forthe Sergio and Kalaska (1998) M1

neural data set.
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Figure 12: VBLS predicts muscle activity from neural firing rate for muscle 7 from the Sergio

and Kalaska (1998) M1 neural data set.
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STEP PLS LASSO VBLS

Sergio and Kalaska (1998) M1 neural data set7.2 % 7.4 % 6.4 % 94.2 %

Kakei et al. (1999) M1 neural data set 65.1 % 42.9 % 80.6 % 94.3 %

Table 1: Percentage of M1 neuron matches between the baseline and all other algorithms,

averaged over all muscles in each data set.

RVM SVR GP LWPR VBLS-RVM

Sinc 0.0134 0.0178 0.0136 0.0124 0.0130

Boston 0.0882 0.1115 0.0806 0.0846 0.0837

Abalone 0.4591 0.4830 0.4440 0.4056 0.4473

Table 2: Average normalized mean squared error (nMSE) over 10 trials of RVM, SVR, GP

regression, LWPR and VBLS-RVM on benchmark regression data sets (sinc, Boston housing

and Abalone data sets).

RVM SVR VBLS-RVM

Sinc 6.7 45.2 4.8

Boston 39 142.8 57.4

Abalone 437 1320 368

Table 3: Number of “relevant” vectors retained by RVM, SVR and VBLS-RVM for sinc,

Boston housing and Abalone data sets.
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RVM VBLS-RVM Ntraining Ntest d

Sinc 18.71 sec 6.24 sec 100 100 1

Boston 372 sec 155 sec 404 102 13

Abalone 2767 sec 428 sec 3327 850 10

Table 4: Average computation time in seconds (sec) for RVM and VBLS-RVM on sinc, Boston

housing and Abalone data sets.Ntrain, Ntest and d are the number of training samples, test

samples and input dimensionality, respectively.
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Training rmse Test rmse Time taken

Cinematch (baseline) N/A 0.9514* N/A

Ridge regression 0.7527 18.59 5.83 sec

Stepwise regression 13.39 6.375 1140 sec

PLS regression 0.9399 1.3280 247.4 sec

LASSO regression 0.9999 1.0594 8.872 sec

VBLS regression 1.0219 1.0443 104.7 sec

Table 5: Root mean squared errors (rmse) of ridge regression,stepwise regression, PLS regres-

sion (where, in the interest constraining the running time,the maximum number of projections

was capped to 20), LASSO regression and VBLS on a downsampled version of the Netflix Prize

data set. The downsampled data set has 6524 training samplesand 725 test samples, with an

input dimensionality of 1767. Computation time for trainingis shown in seconds. *The results

reported by the baseline, Cinematch, is on a separate test subset, as provided by the Netflix

Prize competition.
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RVM SVM VBLS-RVM Logistic Ntraining Ntest d

Ripley 9.75% 10.8% 9.66% 11.37% 100 1000 2

Banana 10.8% 10.9% 11.2% 11.0% 400 4900 2

Pima Diabetes 19.8% 20.1% 19.6% 22.2% 200 332 7

Table 6: Average classification percentage accuracies on standard classification benchmark

data sets for the RVM, SVM, VBLS-RVM and logistic regression.Results were averaged over

10 experimental trials for the Ripley synthetic data set and over the first 10 training and test

splits for the Banana data set.Ntrain,Ntestandd are the number of training samples, test samples

and input dimensionality, respectively.
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Ntraining Ntest Test error Time taken

Primal SVM (Keerthi et al., 2006) 1000 500 13.4 % 5.888 sec

Fast RVM (Tipping & Faul, 2003) 1000 500 11.8 % 10.033 sec

VBLS-RVM 1000 500 7.6 % 0.9761 sec (55.56 sec)

RVM (Tipping, 2001) 1000 500 7.6 % 164.9 sec

Primal SVM 3000 500 14.2 % 12.88 sec

Fast RVM 3000 500 9 % 10.56 sec

VBLS-RVM 3000 500 7.6 % 15.21 sec (401.9 sec)

RVM 3000 500 7.6 % 4295.3 sec

Primal SVM 5000 500 14.4 % 20.70 sec

Fast RVM 5000 500 7.8 % 23.23 sec

VBLS-RVM 5000 500 7.6 % 56.77 sec (1123.2 sec)

RVM 5000 500 7.6 % 1685.7 sec

Primal SVM 10000 500 14.2 % 38.83 sec

Fast RVM 10000 500 7.6 % 43.51 sec

VBLS-RVM 10000 500 7.6 % 238.7 sec (4171.6 sec)

RVM 10000 500 N/A N/A

Table 7: Classification percentage accuracies (prediction errors) for the MNIST handwritten

digit data set for training sets of various sizes.Ntraining andNtest are the number of training

samples and test samples, respectively. The dimensionality of the input data is 784.


