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Abstract

We present a novel algorithm for efficient learning and feaselection in high-dimensional
regression problems. We arrive at this model through a nuadiéin of the standard regression
model, enabling us to derive a probabilistic version of thedlaknown statistical regression
technique of backfitting. Using the Expectation-Maximiaatalgorithm, along with varia-
tional approximation methods to overcome intractabiltg extend our algorithm to include
automatic relevance detection of the input features. Thisa¥ional Bayesian Least Squares
(VBLS) approach retains its simplicity as a linear model, difers a novel statistically robust
“black-box” approach to generalized linear regressiomwigh-dimensional inputs. It can be
easily extended to nonlinear regression and classificatioblems. In particular, we derive the
framework of sparse Bayesian learning, e.g., the Relevanc®Mslachine, with VBLS at its
core, offering significant computational and robustnessathges for this class of methods.
The iterative nature of VBLS makes it most suitable for réaletincremental learning—which
is crucial especially in the application domain of robatibgin-machine interfaces and neu-
ral prosthetics, where real-time learning of models fortomns needed. We evaluate our
algorithm on synthetic and neurophysiological data setsyell as on standard regression and
classification benchmark data sets, comparing it with otieenpetitive statistical approaches
and demonstrating its suitability as a drop-in replacerf@rdther generalized linear regression

techniques.

Keywords: high-dimensional regression, feature selection, géizechlinear models, vari-

ational Bayesian methods, sparse Bayesian learning
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1 Introduction

Real-world data such as those obtained from neuroscieneejarnetrics, data mining or
sensor-rich environments is often extremely high-dimamel, severely underconstrained (few
data samples compared to the dimensionality of the datainéedpersed with a large number
of irrelevant and/or redundant features. Combined withitable measurement noise, efficient
learning from such data still poses a significant challegstate-of-the-art supervised learn-
ing algorithms, even in linear settings. We are especialigrested in scenarios where a large
number of high-dimensional samples need to be processéeht@ily in a real-time, incre-
mental fashion (i.e., where is the number of input dimensiong] is the number of samples
in the data set, and < N). While traditional statistical techniques for supervisedrning
(e.g., Partial Least Squares regression, backfitting) f&ee efficient and robust for these prob-
lems, they lack a probabilistic interpretation and canradilg provide measures needed for
model selection such as the evidence of the data or preglidistributions. On the other hand,
while recent statistical learning algorithms in supergiggarning compute such information,
some lack computational efficiency as, for instance, in Gansprocess regression or classical
implementations of support vector learning, especiallpei < N scenarios we are interested
in.

Our paper introduces a new algorithm, Variational Bayesiaast Squares (VBLS), that
possesses both efficiency and a sound probabilistic foiomdalt is derived by developing a
Bayesian formulation of a classical non-parametric, nababilistic regression algorithm. We
demonstrate that the algorithm can significantly improeedabmputational efficiency of sparse
Bayesian learning, while performing feature detection antdmaatic relevance determination.

Additionally, the algorithm avoids any potentially expamscross-validation or tuning of meta
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parameters by the user, offering a statistically robusifdaatic” method that can be applied
across data sets from various systems and incorporatethor® complex learning algorithms.
In this way, we can apply this technique to very high-dimenal problems in both linear and

nonlinear scenarios.

The algorithm can be interpreted as a Bayesian version offitiawix that does not require
any sampling, making it suitable for implementation in gmental form for real-time appli-
cations (e.g., as in application domains such as roboti@n4machine interfaces, tracking

systems etc.) and for embedment in other iterative methods.

The iterative nature of VBLS is invaluable in real-time stiaas where decisions need to
be made quickly such that an approximate solution is acbéptdn these scenarios, waiting
a longer time for a very accurate solution may not be an aabéptlternative. Additionally,
VBLS is most advantageous when embedded in other iterative metbffeilsng a significant

computational improvement

We start by first discussing some of the popular approachiesifeervised learning of high-
dimensional, underconstrained data, examining methods asl principal component regres-
sion, backfitting, partial least squares regression argd #ssolute shrinkage and selection oper-
ator regression, to name a few. Then, in Sec. 3, we derivdibtagkfrom a probabilistic model
and solve it within the EM framework. Thirdly, we extend thedhel to incorporate structured
priors, as described in Sec. 4, allowing us to exploit Bayesadel selection. Using a vari-
ational approximation technique, we arrive at a new alporjtVBLS, that can be applied to
both regression and classification problems. Sec. 5 shawvsftiile VBLS is derived within the
context of a linear model, it is also a powerful tool for supged learning in nonlinear settings.
Finally, we evaluate VBLS on high-dimensional synthetic asal data sets, demonstrating its

significant computational advantages over other competstiatistical learning methods.
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2 Computationally Tractable Linear Regression

We begin by examining the graphical model for linear regogssas shown in Fig. 1, which

corresponds to the following generative model:
y=blx+e Q)

where, for successive samples from this model, we assumedrei.i.d. distributed as ~

Normal(e; 0,4,). Given a data set of observed tuples = {(x;,:)}.., our goal is to estimate
T

the optimal linear coefficients = {bl by - bd:| which combine the input dimensions to

produce the outpuj.

It is easy to see that under our current noise model, the apestimate of the regression

parameters (in a least-squares or maximume-likelihoodegesgiven by:
bois = (X'X) ' X"y 2)

whereX denotes a matrix whose rows contain theandy is a column vector containing the
correspondingy;. EQ. (2) is also known as the ordinary least squares (OL$i}isal A fan-in

of the type observed from to y in Fig. 1 couples all the regression coefficients in the paste
inference—a fact reflected in the need to evaluate the aovegimatrixX” X in Eq. (2). With
an increasing number of fan-in variables in the graphicadlehgor equivalently, an increasing
input dimensionalityl), evaluation of the solution in Eq. (2) becomes increasimgimputa-
tionally expensive (approximatel9(d®)) and numerically brittle. While one can attempt to
reduce the complexity down 10(d?) with efficient matrix inversion techniques (Belsley, Kuh,

& Welsch, 1980), solutions to this problem typically faltanone of two categories:
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1. Dimensionality reduction for regression: Those that try to find a low-dimensional, full-
rank representation of the data which captures the safiarnation required to perform

the regression.

2. Data structures for fast statistics: Those that deal with the complete dimensionality, but
structure computations as efficiently and robustly as ptsgior example, by performing

successive inexpensive univariate regressions).

In the following subsections, assume we are given a datdXey} with inputs X =
[x;...xy]T consisting ofd-dimensional vectorg; (wherei = 1,2,..., N andN is the num-
ber of data samples) and outpyts= [y, ...yx|T consisting of scalarg;. Without any loss of
generality, we shall assume that bathandy are mean-zero. We want to find the vedtoof

regression coefficients which linearly combine the inpad predicty.

In an attempt to perform a comprehensive (although not estive) review of the literature,
we discuss some examples of algorithms that are represenéthe two categories described

above.

2.1 Dimensionality Reduction for Regression

Often the information relevant to predicting the outpetin be localized to a low-dimensional
manifold within the domain ok. The methods discussed in this section rely on the assumptio
that by performing a dimensionality reduction on the inppaice, the resulting lower dimen-

sional manifold captures sufficient information to accekapredict the output.
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2.1.1 Principal Component Regression

The underlying basis of principal component regression (P@Rsey, 1965) is that the
low-dimensional subspace which explains the most variamdke x also captures the most
essential information required to predictStarting with the empirical covariance mat®ecr

of the input data:

N
1 T
YpcrR = N_1 ; XiX; 3
we compute its eigen-decomposition:
EPCRVj = )\jllj (4)

whereu; is the j-th eigenvector and; the corresponding eigenvalue. By projecting the input
x onto the principalK” eigenvectors using the projection matfik= [u; u, ... ug|, we can

compute the regression solution as follows:

brer = (UTXTXU) " UTX"y (5)

Note that as a result of the projection onto the orthogonggreiectorsuy, ..., ug, the
matrix (UTXTXU) in Eq. (5) is diagonal, and hence, trivial to invert—the lrahthe com-
putation having already been expended in the eigen-decsitiggostep. As a result, PCR es-
sentially reduces the multivariate regression to a setd#pendent univariate regressions along

each of the orthogonal principal component directions.

A serious drawback of PCR is that it is based purely on variaméee input data (Schaal,

Vijayakumar, & Atkeson, 1998). The regression solutionhisrefore highly sensitive to pre-
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processing operations such gghering which modify the perceived variance of each input
dimension. Hence, low-variance input dimensions whichnesesrtheless important predictors
of the output may be discarded in favor of high-variancejipekevant, dimensions. If however,
we operate on the joint spage= [x’y]” of the data, we can take the output into consideration

when determining the appropriate lower-dimensional nodahif

2.1.2 Joint-space Factor Analysis for Regression

Factor analysis (Everitt, 1984; Ghahramani & Hinton, 19873 density estimation tech-
nique which assumes that the observed datagenerated from a lower dimensional process

characterized by latentor hiddenvariablesv as follows:

z; = Wv; +€; wherel <i< N (6)

If we assume that the latent variables are independentiyldited as:

v; ~ Normal(v;;0,I)*

€; ~ Normal(e;; 0, ¥)

then the parameteM/ andW can be easily estimated using Maximum Likelihood (Ghahrama

& Hinton, 1997) or Bayesian (Ghahramani & Beal, 2000a) tecsq In joint-space factor

'The notation Norma(lx; i, ) denotes a Normal distribution overwith meanu and co-

variancex..
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analysis for regression (JFR), we define:

X Wi v, 0
Z = and W = and ¥ = (7

y W, 0" 1,

Once we estimat® andW for the joint data space af we can conditiory onx and marginal-

ize out the latent variablesto obtain:

(ylx) = W, (I+ WIw'W,) " Wi x (8)

(.

~\~
T
bJFR

where(-) indicates expectation. Eq. 8 is equivalent to the below:

b= U'W, (1+ WIW'W,) ' W7 (9)

)

Note that the required matrix inversion @+ WX W, W, ) is of the order of théatentdimen-
sionality K, which makes joint-space factor analysis for regressionprdationally attractive
for problems in which the underlying latent variable malifes known to be relatively low

dimensional (i.e K < d).

2.1.3 Joint-space Principal Component Regression

Tipping and Bishop (1999) show the relationship betweerofaatalysis and principal com-
ponent analysis. In particular, they show that factor asialgeduces to PCA if isotropic output

noise is assumed (i.e = ¢2I). Taking the factor analysis solution for regression in .
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and assuming thab = oI, we can simplify the regression solution so that it is:

1 1

b= (o°1)" W, <I + W (6°1)” Wx> Cwr

Y

=W, (0T +WIW,) " W’ (10)

Additionally, in PCA for regression, if we follow the assungpt thatv ~ Normal(0,I), then

each column oW is an eigenvector scaled by its corresponding eigenvalue:
W = [)\1111 /\2112 Ce )\KuK] =UA (11)

where, as previously defined in Sec 2.1~ [u; uy ... ug]is ad x K matrix of principal
eigenvectors and is the diagonal matrix of corresponding eigenvalues (i¥.)> ... Ag|in

its diagonal). Making use of the orthogonality of the eigeaters, we can write:

WIW, =W'W-W/W,

=A*-W/W,
If we denoteA” = 521 + A2, then we can rewrite Eg. (10) to get:

A2 T T
b=W, (A - WIW,) Wi

— W, []fz ~ AW (W,ATW - T) Wy]x‘ﬂ w’ (12)
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_ 1
Since we have a scalar outpytthe matrix inversior(WyA 2Wy - I) reduces to a scalar

division, making Eqg. (12) now:

b=W, w7’ (13)

If we take the limit of the quantity above a$ approaches 0, theA” = A2 i.e., exactly the

matrix of squared eigenvalues. In which case, we can fudingplify Eq. (13) as:

bypcr= Ux [I - —4——| U] (14)
whereU = [U] UJ]" is the matrix containing the eigenvectors of the joint data its

columns.

2.1.4 Kernel Dimensionality Reduction for Regression

Recently, Fukumizu, Bach, and Jordan (2006) have suggestetblfowing method to
achieve dimensionality reduction for regression. Assunae[lU V] is thed-dimensional or-
thogonal matrix, wher&J spans the subspace xf‘relevant” to predictingy andV spans the

orthogonal “irrelevant” subspace.

If we definexy = UTx andx; = V', then kernel dimensionality reduction seeks to find
the subspace which minimizd$y|xg,xz|xg), Wherel(z;, x2) denotes mutual information

defined by:
I(xq,29) = //p(:tl,xg)log deleEQ

p(z1)p(r2)

This concept is extended to the more general case of repragkernel Hilbert spaces on the
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domains ofy, xz andx; endowed with Gaussian kernels.

It should be emphasized that as with the other methods tescin this section, kernel
dimensionality reduction requires that the latent dimemality X be a known quantity. In
general, however, unless explicit meta-level knowledgéhefdata is known beforehand, the

estimation of this quantity would require expensive crestgdation to avoid overfitting.

2.1.5 Stepwise regression

Stepwise regression (Derksen & Keselman, 1992) is a poptadtistical technique for large
data sets that chooses dimensions to include in a regresgdel. The selection of dimen-
sions for the model can be in a forward or backward manner.ekample, forward stepwise
regression starts with no terms in the model and, at each atiejs the most statistically sig-
nificant dimension (using either the highgsstatistic or lowesp-value) until none are left. In
contrast, backward stepwise regression starts with akdsions in the model and removes the
least significant until the remaining dimensions are dteéifly significant. Unfortunately, there
are several issues with stepwise regression. These initkithability to cope with redundant
dimensions (it deteriorates in the presence of collinggaihd its inability to shrink regression
coefficients (Tibshirani, 1996), resulting in too-larggnmession coefficients. These properties,

among others, make it problematic for high-dimensionah dats.

2.1.6 Partial Least Squares Regression

Instead of seeking a low-dimensional version of the probssme methods seek to struc-

ture the computation in such a way that the problem is decssgpmto computationally ef-
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ficient sub-problems. For example, by decomposing the wauisite regression problem into
successive univariate regressions, one can create raeuative methods which do not suffer
from the difficulties of matrix inversion for underconstrad data sets. Partial Least Squares

regression (PLS) (Wold, 1975) is one example of such a method

1: Initialize: Xies= X, Yies= Y

2: fork=1to K do IIK < d whered is max. input dim.
3 v — XL yres /[correlation direction
4: s — XiesVi /lproject input
5 by < S Yres/ (sfsk) /lunivariate regression
6. VYres < Yres— DSk /lcompute residual output
70 Xres— Xres— sppj, Wherepy, = XZLesi./ (st sk) /lcompute residual input
8: end for

Algorithm 1: Partial Least Squares Regression

In Sec. 2.1.1, we noted that PCR projected the input data oméoyaspecific set of direc-
tions, i.e. the principal eigenvectors. As a direct resb#,coefficients of the optimal regression
vectorbpcgfall out of inexpensive univariate regressions along eaofeption direction. How-
ever, obtaining the eigenvectors is an (expensive for ldrg d) operation that can be reduced

to a fastelO(d?). It is here that PCR must expend the bulk of its computation.

PLS regression is a technique which is extensively usedgh-timensional and severely
underconstrained domains such as in chemometrics. Ratrecttmpute the covariance struc-
ture of the input space, as is done in PCR, PLS iteratively aw®its projection directionsy
(at thekth iteration) according to the direction of maximwurrelation between the (current

residual) input and the output. Computation of each prajedtirection isO(d) (linear) in the
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dimensionality of the data, making PLS a highly efficientasithm. As shown in Algorithm 1,
successive iterations create orthogonal projection tilines by removing the subspace of the
input data used in the last projection. PLS requires no esipermatrix inversion or eigen-
decomposition and, thus, is well suited to the high-dimamesl, yet severely underconstrained

data sets in applications such as near infrared (NIR) speetry (Frank & Friedman, 1993).

The number of projection directions found by PLS is only kebly the dimensionality of
the data, with each univariate regression on successiyegimn components further serving
to reduce the residual error. Using alprojections is equivalent to performing Ordinary Least
Squares (OLS) regression. Hence, to avoid overfitting, liperithm is typically stopped after
K projection components are found, whétas determined empirically using cross-validation.
It can be shown that if the distribution of the input data isesjical (i.e. has covariance structure

o21I), then PLS only requires a single projection to optimallyarestruct the output.

2.1.7 Backfitting

T
1 Init: X = [Xh cee 7XN]Tvy = {yl, . ,yN} sy Omyi = gm<X'L;9m)agm = [gm717 cee agm,N]T

2: repeat

3: form=1toddo

4: T —Y — Dk o 8 /lcompute partial residual (fake target)
5: O «— argming, (g, — rm)2 /loptimize to fit partial residual
6: end for

7: until convergence of,,

Algorithm 2: Backfitting
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Another very general framework for estimating additive misdf the formy(x) = 2:1:1
gm(x;0,,) is backfitting (Hastie & Tibshirani, 1990), where the fuocts g, are adjustable
basis functions (e.g. splines), parameterized Ry As shown in Algorithm 2, backfitting de-
composes the statistical estimation problem ihiadividual estimation problems by creating
“fake supervised targets” for each functigp. At the cost of an iterative procedure, this strat-
egy effectively reduces the computational complexity ofifias in graphical models and allows

easier numerical robustness control since no matrix imweis involved.

For all its computational attractiveness, backfitting pres two serious drawbacks. Firstly,
there is no guarantee that the iterative procedure outimédgorithm 2 will converge as it is
heavily dependent on the nature of the functigns Secondly, the updates have no probabilistic
interpretation, making backfitting difficult to insert intbe current framework of statistical
learning which emphasizes confidence measures, modetisalaad predictive distributions.
Note that Hastie and Tibshirani (2000) have proposed a Bayesirsion of backfitting. Their
algorithm, however, relies on Gibbs sampling, which is msugable when dealing with the
nonparametric spline models discussed there and is quefeldsr generating samples from
the posterior additive model. We, instead, focus on devetpp Bayesian version of backfitting
that does not require any sampling and hence, can be imptethenincremental form for use

in real-time applications such as real-time brain-macimterfaces or robotics.

In practice, a large class of methods can be traced to haviustomputational underpin-
nings. For example, in the case of linear regress®hXb = X'y), Gauss-Seidel/Jacobi

updates are a natural specialization of the general bacgfatgorithm:

partial residual
,—/\q

(y - mem)T Xm

T
X Xm

b = (15)
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wherex,, = [z, - xnm]?, i.€. the vector ofnth dimension entries, whil&X,;, denotes the
data matrix with thenth dimension removed arlal;, denotes the regression coefficient vector
with the mth coefficient removed. The well-known cascade-corretatieural network archi-
tecture (Fahlman & Lebiere, 1989) can also be seen to havlasmigorithmic underpinnings;
the addition of each new hidden unit can be considered to é¢uthing of an additional ba-
sis function in the sequence, with the previous basis fanstbeing locked to their previously

tuned forms.

2.1.8 Least Absolute Shrinkage and Selection Operator regssion

Least absolute shrinkage and selection operator (LASS@¥ssion (Tibshirani, 1996)
shrinks certain regression coefficients to zero, givingrotetable models that are sparse. It
minimizes the sum of squared errors, given a fixed bound osuheof absolute value of the
regression coefficients. However, LASSO regression andadthvef other L1-regularized re-
gression methods have an open parameter, typically a rezatlan parameter, that needs to be
set. Some of the methods for solving L1-regularized regpagsoblems (especially large-scale
problems) include convex optimization techniques suchegsiential quadratic programming
or interior- point methods, e.g., (Kim, Koh, Lustig, Boyd, 8o@nevsky, 2007), coordinate de-
scent methods (J. Friedman, Hastie, & Tibshirani, 2008) Gauss-Seidel method (Shevade &
Keerthi, 2003), generalized iterative scaling (Goodm&©42, and iterative re-weighted least

squares (Lokhorst, 1999; Lee, Lee, Abbeel, & Ng, 2006).
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The LASSO estimatb,,.., is then defined as:

2
Dlasso = arg min i (yi — Z bjxij) subject tOZ b;| <t
i=1 J J

wheret > 0 is a tuning parameter which can be set usinfpld cross-validation or manual
hand-tuning. For smaller values gf LASSO regression gives solutions that are sparse esti-
mates of the least squares estimates. For larger valuethefabove constraint has little effect,
resulting in a solution similar to ridge regression. Themuifference between LASSO regres-
sion and ridge regression is that LASSO attempts to shriakstiution by using L1 penalty

norm (i.e.>" b) while ridge regression uses L2 penalty norm (.6b?). Ng (2004) shows that

this contributes to LASSO being an effective algorithmalli¢é for high-dimensional data sets,
at the expense of an open parameter that needs to be setrsagyalidation or through the op-
timization of a regularization “path” of solutiofAe.g., (Efron, Hastie, Johnstone, & Tibshirani,

2004).

2.2 Data Structures for Fast Statistics

Significant computational gains can be achieved by usingtemdata structures to organize
the information required for statistical analysis. Exaespbf these include KD-trees and ball-
trees (J. H. Friedman, Bentley, & Finkel, 1977; Gray & Moor802; Omohundro, 1990),
which allow caching of sufficient statistics over recurgivemaller regions of the data space,

and AD-trees (Moore & Lee, 1998; Komarek & Moore, 2000) whegeed up computations

2That is, solutions that minimize the, loss function. When the value of the open/tuning

parameter changes, regularization “paths” of solutioegg@nerated.
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involving conjunctive queries and “counting” statistics.

KD-trees (J. H. Friedman et al., 1977) are data structuréshwgartition the input space into
hyper-rectangular regions. The root node contains thediogrbox of the entire data set, and
each non-leaf node has two children which partition themqargpace by splitting the bounding
box along its longest dimension (see Fig. 2). Splitting stajpen the bounding boxes reach a
certain minimum size, or when the number of points in a boglea a minimum value. The key
computational saving results froamnotatingeach node of the tree with specific statistics about
the data in the partition of space rooted at that node. Fanpleg caching the bounding box
of the data in each node allows eliminating a significant neinaf explicit comparisons when
answering nearest-neighbor queries. In this way, for eaeyg only a fraction of the leaves
in the tree are visited resulting in sub-linear computatl@omplexity for most operations that

typically require at least linear time.

A similar computational saving is achievable for kernelsignestimation if we are willing
to sacrifice a small amount of accuracy. Given the bounding$®of the nodes in the KD-tree,
we can bound the minimum and maximum value of the kernel fan¢assuming a monotoni-
cally decreasing function) within a hyper-rectangle. H thfference between the minimum and
maximum is less than a tolerance vatge can skip the evaluation of each query point within
the node and approximate it by an average value. This ach&gaificant savings when the
guery points are the data points themselves, as is frequémetcase in settings where we eval-
uate the data on kernels that are centered at the data psoatsilled/NV-body problems (Gray
& Moore, 2001).

KD-trees suffer in higher dimensional spaces since as thremsionality increases, one
observes that most of the volume is concentrated in a thiih ah¢he outer edges of the

space. Metric-trees and ball-trees (Omohundro, 1990) lematives that are robust to high-
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dimensional problems. They do not necessarily require didaan space, but merely one in
which the triangle inequality holds (Moore, 2000). Becaukthis, we can derive simple yet
computationally efficient bounds on the distances betwegueay pointq, and any point

belonging to a ball of radius:

la—x[| <lg—cf +r

la—x[| > lq—cl -

These distance bounds are then used in a manner similar botimeling boxes of KD-trees to

reduce the number of comparisons required to be performiédtiaé actual data points.

AD-trees (Moore & Lee, 1998) are an efficient representdtorstatistical methods which
rely on “counting” occurrences of records satisfying sétsomjunctive queries over the record
attributes. Traditional representation schemes for sath mhclude precomputing answers to
each query, which are stored in so-cal®htingency tables Contingency tables are useful
in creating probability tables for Bayes nets and in conjiwectule learning algorithms such
as decision tree learning. Potential uses for statisticatmme translation are obvious when
we use the popular TF-IDF (term-frequency, inverse-docurrequency) representation of

documents.

AD-trees allow the precomputed answers to queries whichagadable in contingency
tables to be stored in a fraction of the memory requiremeRts. data sets in which records
arrive incrementally or in which the initial cost of constting the AD-tree is too high, an

incremental version is also possible (Komarek & Moore, 2000



Ting, D’Souza, Vijayakumar, Schaal Efficient High-Dimemsal Regression 20

2.3 Summary

For the purpose of comparison, we included the followingatgms for evaluation in our
experiments: stepwise regression, PLS regression and OA®§ression. We omitted the
other methods reviewed in this section due to computatidreavbacks or unsuitable model
assumptions. For example, methods like joint-space fatafysis for regression, principal
component regression, joint-space principal componagression and kernel dimensionality
reduction for regression require that the latent dimeradign&K” be known. Estimation of this
guantity for high-dimensional data sets could be potdgtis#ry expensive due to the cross-
validation procedures needed. Additionally, principaingmnent regression may also discard
important low-variance inputs that contribute to the otiipufavor of high-variance, but irrel-
evant, input dimensions since it seeks components to magithe variance in the input data.
Backfitting may be computationally more robust for high-disienal inputs, but it is unable
to detect irrelevant and redundant input dimensions shitvgige exist in the input data. Please

refer to Schaal et al. (1998) for a more comprehensive regfaivese methods.

3 Probabilistic Backfitting

The graphical model shown in Fig. 4(a) generalizes our dision in Sec. 2, such that the
input “dimensions” of Fig. 1 are replaced by arbitrary bdsisctions f,,,(x) of the input—a
model commonly known ageneralizedinear regression (GLR) (Hastie & Tibshirani, 1990).
Our goal remains the same: given a dataxset= {(x;, %) }..,, we wish to determine the most

likely values ofb,,, which linearly combine the basis functiorig to generate the outpyt

We also noted in Sec. 2.1.7, that the backfitting family obalhpms is an efficient set of
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methods which, under the right circumstances, is extrenodlyst since it requires no expensive
matrix inversion, and thus avoids the numerical pitfallsréin. A drawback of the backfitting
procedure is that it does not stem from a generative prababimodel, which limits its ap-
plication in current Bayesian machine learning framewotksthis section, we will describe
how a probabilistic version of backfitting can be derived bgking a simple structural modifi-
cation to the graphical model for standard generalizedalimegression. The statistical model

corresponding to Fig. 4(a) can be written as follows:

d
y(X) = Z bmfm(x; Hm) +e€

i.e., multiple predictord,,(x; 6,,,) (wherel < m < d) that are generated by an adjustable non-
linear transformation with parameteflg, and that are fed linearly to an outpyty an inner
product with a regression vectbr= [b;b, - - - by]” plus additive noise. As we mentioned in
Sec. 2, evaluation dé using the OLS solution in Eq. (2) becomes increasingly caatmnally
expensive and numerically brittle. Note that ridge regossan “fix” such problems numeri-
cally by stabilizing the matrix inversion with a small addi diagonal term. However, a ridge

factor typically introduces uncontrolled bias.

A simple modification of the graphical model of Fig. 4(a), lemer, enables us to create the
desired algorithmic decoupling of the predictor functioasd gives backfitting a probabilistic
interpretation. Consider the introduction of random vdgaab;,,, as shown in Fig. 4(b). These
variables are analogous to the output of ghefunction of Algorithm 2 and can also be inter-

preted as an unknowfake targetfor each branch of the regression fan-in. For the derivation
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our algorithm, we assume the following conditional disitibns for each variable in the model:

yi|z; ~ Normal (% 1TZi7¢y)
(16)

Zim‘xi ~ Normal(zim; bmfm(xz)a wzm)

wherel = [1,1,...,1]7. It needs to be emphasized that now, the regression coaffidig
arebehindthe fan-in. With the introduction of the random variablgs, we are essentially in
a situation where we wish to optimize the parametgrs: {{bm, wzm}fnzl ,wy}, given that
we have observed variablés;,y;}~ , and that we have unobserved variabjes}." , in our
graphical model. This situation fits very naturally into fh@mework of maximume-likelihood

estimation via the EM algorithm.

3.1 An EM Algorithm for Probabilistic Backfitting

Given our modified statistical model represented by the lycap model of Fig. 4(b), we
wish to estimate the parametéys and (possibly) optimize the individual functiorfg (x; 6,,,)
with respect to the parametdls,. This is easily formulated as an EM algorithm, which maxi-
mizes thencompletdog likelihoodlog p(y|X) which, from Fig. 4(a), can be expressed as:

1 N

=y~ bTE(x:))” + const a7

N
log p(y|X) = — logy — 3
=1
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The EM algorithm however, operates by maximizing the exgecompletelog likelihood

(logp(y, Z|X; ¢)), where:

N
N | )
logp(y, Z1X; ¢) = — log ¥y — 5 - > (i —1"z)
Y oi=1
d N
_Z —longm—i-Qw Z(Z”” ,,Lfm(xi;em))2 + const (18)
AMi=1

As this maximization is solely based on standard manipuiatof normal distributions, we
omit derivations and summarize the EM update equations,f@and the noise variances and

. as follows:

E-Step:

(i)
(Zim) = by fon(x:) + éwzm (yz - be(Xi))

M-Step :

— sz\il (zim) i (Xi)
T el
by = %Z (v = 1" (z))" +178,1

N

Yom = Z sz - mfm XZ))Q""ng

=1

where we defing = ¢, + anzl Y.m, andX, = CoVv(z|y, X). In addition, the parameteés,
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of each functionf,, can be updated by setting:

N

and solving ford,,. As this step depends on the particular choicef,gf e.g. splines, kernel
smoothers, parametric models, etc., we will not pursueyifarther and note thanystatistical

approximation mechanism could be used.

There are two observations to be made regarding the aboveldgvitam. First, all equa-
tions are algorithmically)(d), whered is the number of predictor functions,. Second, if we
substitute the expression for;,,) in the maximization equation fdr,,, we get the following

update equation for thex(+ 1)-th EM cycle:

N o sd ) |
b(n+1) _ b(n)+wzm Zi:l (yl Zkzl bk fk(Xz>> fm(Xz)

20
" ; Sl )

Thus, in an EM cycle, thexth regression coefficient is updated by an amount propatiorthe
correlation between theth predictor and the residual error. Edghis updated independently
(that is, independent of the other regression coefficigntaherep # m for p = 1,..,d). In

each EM cycle, alll regression coefficients are updated.

In this way, the residual can be interpreted as forming ae'fakget” for thenth branch of
the fan-in. As the next section shows, this enables us teeplae algorithm in the context of

backfitting

The matrix inversion in the OLS solution requir@$d?) if more efficient and robust matrix
inversion methods are used. In comparison, the computtmymplexity of the EM-based

probabilistic backfitting algorithm i6)(d) per EM iteration. Should the number of EM itera-
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tions be significant, it is true that the run-time of the EMalthm could be as long as non-
iterative approaches. However, the true benefit of ourtiterapproach arises when dealing
with real-time applications, where decisions need to beawpdckly in a short amount of time
such that an approximate solution is acceptable. AddilignaM-based probabilistic back-
fitting can be embedded into other iterative methods in oraeealize more computationally

efficient update equations.

3.2 Relating Traditional and Probabilistic Backfitting

To better understand how Eq. (20) can be interpreted as Bitisia Backfitting, notice
that backfitting can be viewed as a formal Gauss-Seidel ithgor an equivalence becomes
exact in the special case of linear models (Hastie & Tibsiird990). For the linear system

FTFb = FTy, the Gauss-Seidel updates for the individyalare:

S (= St bifil)) Fnx)

by, =
ity fn(xi)?

(21)

Note that if used naively, Eq. (21) does not guarantee cgeviee at all. The Gauss-Seidel
algorithm extends the above equation by adding a fradtion w) of b,, to the update, giving

us the well-knownrelaxationalgorithms:

S (3= i b)) fn(x)
ZZ‘]\L1 fm<xi>2

(22)

which has improved convergence rates doerrelaxation(l < w < 2) or improved stability
for underrelaxation0 < w < 1). Forw = 1, the standard backfitting of Eq. (21) is recovered.

The appropriate value af which allows the iterations to converge, while still maintag a
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reasonable convergence rate, can only be determined byng&ay. (21) as a discrete dynami-
cal system and analyzing the eigenvalues of its systemxmagritask taking)(d®) (or O(d?),
for more efficient methods). If however, we set= w,, = ¥.,,/s in EQ. (22), it can be shown
(after some algebraic rearrangement) that we obtain our gd&te in Eq. (20) exactly. Indeed,

this is a probabilistic version of backfitting.

A similar EM algorithm and model structure has been propasetie context of signal
processing (Feder & Weinstein, 1988), but we believe thisadirst time that the connection of
this probabilistic derivation to the backfitting algoritiras been demonstrated. As we show in
Sec. 4, this allows us to place this class of methods withimehmvider framework of Bayesian

model complexity estimation.

3.3 Convergence of Probabilistic Backfitting

In general, for any maximum likelihood problem, the EM algfon guarantees monotonic
increase in the incomplete likelihood, but does not guaettiat the final solution is the global

maximum. This section tries to answer the following questio

1. What is the point of convergence of the probabilistic baitk§ EM algorithm?

2. Are there local maxima (globally suboptimal solutionsjts likelihood space?

The answers to both questions depend on the fact that theapiete likelihood (or marginal-
ized complete likelihood) function fdinear regression in Eq. (17) has a (possibly non-unique,
but convex) global maximum corresponding to the OLS sotutbEq. (2), but no local max-
ima. Could the introduction of the hidden variables and aclilil parameters in Eqg. (18) in-

troducelocal maxima in the likelihood landscape? Note that for examimogvergence prop-
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erties, we only focus on the estimation of the parameters [b, 1.1, ...,v.q4,%,]7, as the
functions f,, cannot be treated in general without knowing their striectue start with the

assumption that we have reached a stationary pwimh the EM algorithm, which implies:

d(Inp(y,Z|X; ¢))
O o

~0 (23)

Using Jensen’s inequality, it is easy to show that for antemtyi distribution()(Z) over the

hidden variables:

I p(y[X; ) > (p(y, ZIX: 9)) () + H[Q(Z)] = F(Q. ) (24)

whereH [-| denotes entropy. EM performs a coordinate ascent; aleynataximizingF with
respect toQ) (in the E-step) andp (in the M-step). DifferentiatingF (@, ¢) w.r.t. ¢ at the

stationary poing*, and noting that the entropy tert [Q)(Z)] is independent o, gives:

IF(Q. )| _ o(np(y. ZX; )| _ (25)

2 v 0 $=o"

Note, however, that the preceding E-step §gt#) to the true posterior distributionZ|y,
X; ¢"), which raises the lower bound in Eq. (24) to an equality—He(y|X; ¢) = F(Q, ¢)—

from which it follows that:

=0 (26)

g=¢= 0P ‘¢=¢*

dlnp(y|X; d))‘ _0F(Q,9)
I .

i.e. we have reached a maximum in theompletdikelihood as well. Given that thencom-

pletelog likelihoodIn p(y|X; ¢) in Eq. (17) ha®nlya global maximum (i.e., the OLS solution),
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reaching the stationary point of Eq. (23) in our EM algoritfanprobabilistic backfitting must
correspond to finding the OLS solution. Therefore, prolistinl backfitting is indeed perform-

ing true linear regression with a global optimum.

4 Variational Bayesian Least Squares

The probabilistic version of backfitting suffers from ovtifig when the input data contains
many redundant and/or irrelevant features. To regularsz®LS solution, we adopt a Bayesian
framework and place a prior distribution over the regressioefficientsb to get VBLS. As
the following two sections demonstrate, our choice of psipucture results in two different,
yet important, forms of regularization. We also discuss hoevcan easily obtain confidence

intervals and demonstrate how VBLS can be additionally appib classification problems.

4.1 Regularizing the Regression Vector Length

The graphical model for our first form of Bayesian prior is shaw Fig. 5(a). We place
a Gaussian prior over the regression coefficient vebtao that the variance of the prior is
controlled by a single precision parameter As a result, our uncertainty in the value of this

prior precision is represented by a broad Gamma distribugier«:

bla ~ Normal(b;0,1/«)
(27)
a ~ Gamma «; aq 0, bap)

wherea, o andb,, o are the initial hyperparameter values for the Gamma digioh overa.

Two motivations lie behind our choice of Gamma prior. Firséls a scale parameter, an un-
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informative distribution overr must be uniform over &g scale—corresponding to a Jeffreys
prior (Jeffreys, 1946; Gelman, Carlin, Stern, & Rubin, 2000 fulfill the requirement of an
uninformative distribution by choosing the Gamma disttida parameters;,, andb,,, appro-
priately (i.e,a., b, — 0). Secondly, the Gamma distribution is analytically coneaty since

it is a conjugate distribution for the Gaussian precisiors the graphical model in Fig. 5(a)
shows, our set of unobserved random variables in the modejvis{b, a, {zi}f;l}, and we
are especially interested in obtaining posterior distiims over the random variablésand

a. The parameters we wish to optimize are néw= {b, {wzm}fnzl .Uy, Ga, ba}. The joint

probability over this model extends Eq. (18) to:

logp(y,Z,b,a|X; @) = logp(y,Z,b, a|X; ¥, 1y, an, by)

N

__N _ 1T
= 5 10g1ﬂy wa;(yl 1 Zz)

‘T oo 1 @9
— Z Elogﬂ)zm—l—ﬁZ(zzm_bmfm(xzaem))
— zm

=1

d
d
+ 5 loga — % Z b2, +(aa0 — 1) loga — by oo + const

m=1

While the log joint posteriotog Q(Z, b, «) is readily available from Eq. (28) (up to a con-
stant additive term), the extraction of marginal probaieti of interest such ag(b) andQ(«)
is analytically intractable. Therefore, we use a factoralational approximation (Ghahramani
& Beal, 2000b; Parisi, 1988; Rustagi, 1976) to the true pasten which we assume that the
posterior distribution factorizésover the variables of interest, i.e., we restrict ourseleea

family of distributions of the fornQ)(Z, b, «) = Q(Z)Q(b)Q(«). This procedure allows us to

3This particular factorization causes the marginal postesi b to be a Gaussian. An alter-

native (also analytically tractable) formulation(Z, b, ) = Q(Z)Q(b, «) is also possible in
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analytically derive an EM-like set of update equations Far individual posterior distributions:

Qa) = Gamma(a; Qs Ba>

d
Q(b) = [ [ Normal (b,; .. o7,

m=1

A~

Qo = Qg0 + 5
(b"b)
2

— Ly x;)? + (a
b — (wszfm( i)+ >>

i=1

[ib,, = O ( ! me (x:) <Zim>>

Uom 2=

Boa = ba,O +

where:

(b™b) = (b)" (b) + 17%1,

(b) = [ty toy *+- ty)", @andXy, is the posterior covariance bf(i.e., a diagonal matrix with

s, €ntries on its diagonal).

The form of the)(Z) distribution updates remains identical to that derivedén.S.1, with

the exception that the parametéys are replaced with the expectatiofis,), so we shall not

repeat them here. However, substituting the expressian&fg) in the update equations for

which the resulting marginal fds is a Student-t distribution.
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the distribution of)(b) gives the following update for the regression coefficients.

(n+1) _ Zi\; fm(X¢)2 b (@)
<bm> (ZZV1 fm(Xz‘)2 + Vo <Oé>> < m>

o S (3= X (00 ) fnx)
s (ZZ]L (%)% + Yo (a))

+ (30)

where, as in Sec. 3.5,= ¥, + 3% _ ¥

Comparing the solution in Eq. (30) with the result derived goobabilistic backfitting in
Eqg. (20), we see that in absence of correlation between siduad error and thé-th predictor
fr(x)—thatis, if the second term of Eq. (20) is zero, the first teffaa (30) is a decaying term.
As a result, the corresponding regression coefficign} will go to zero after some number of

EM iterations. This effect is similar to that eshrinkagemethods such as ridge regression.

Note that the structure of the marginal prior over the regjogscoefficientd in Fig. 5(b)—
that is, the marginal prior db from Eq. (27)—suggests that solutions closer to the origin a
favored. In fact, sharing the common precision variabkcross all the regression coefficients
results in a regularized solution which minimizes the ndjisj* of the entire regression vector.
This is, in fact, identical to a ridge regression solutiothva single ridge parameter. However,
in our formulation, the estimation of the “correct” value tbe ridge parameter is implicitly

inferred without the need for traditionally expensive aealidation techniques.

Regularizing the regression vector length is particulaggful when there are groups of
inputs supplying redundant information (for robustnesesg sensors, for example), since the
regression solution tends to distribute the responsjtidit the output inference over all relevant

input dimensions.
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4.2 Regularizing the Number of Relevant Inputs

Modifying Fig. 5(a) slightly, we now place individual pregn variablesy,,, overeachof
the regression parametérs, resulting in Fig. 6(a). This model structure can be captirg

the following set of prior distributions:
d
bla ~ ] [ Normal(b,,;0,1/c,)
m (31)

d
o~ H Gamma ay,; da,, 0, bar.0)

m=1

wherea,,, o andb,,, o are the initial hyperparameter values ¢oy,.

As the graphical model in Fig. 6(a) shows, our set of unoleskrariables in the model is

now {b, a, {zi}iN:l}. The modified likelihood function can be rewritten as folkow

logp(y,Z,b,a|X; ) = logp(y,Z,b,o|X; ¥,, Yy, aa, ba)

N

N 1
-y lort 5, 2 17
d _N 1 N
- E_ ?10g¢zm+% E (Zim_bmfm(xi;0m>)2 (32)

i=1

+

+ {(an,, 0 — 1)log o — ba,, 0m} + const

m=1
d
m=1 “-
d
m=1

Proceeding as in Sec. 4.1, we can derive the following itexatpdates to the distributions of



Ting, D’Souza, Vijayakumar, Schaal Efficient High-Dimemsal Regression 33

Q(b) andQ(«):
d N
ot [T camme{n. 1.
m=1
d
Q(b) = [ ] Normal(b,.; pus,, , 3., )
m=1
X 1
Ao, = aam,o + 5
A 2 (33)
bam = bam,U + ;n
1 & B
az?m - <¢ me (Xi)2 + <am>>
A =1
2 1 .
Ub,, = Obm w Z fm (Xl) <sz>
Zm g
where:

(B2) = (b)? + 02 =pi +ob

Deriving the update equations for the mean of the regressiefiicients as we did in Eq. 30,

we get:

b, ) — Sy fn (i) ) b, )"
o) (Efvzl fm (%)% + Yam (o) )

Vm Yt (yl - (i)™ fk:(Xz')> fm(x:)

T (S ot o ()

(34)

where, asin Sec. 3.5,= ¥, + 3% _ ¥

The solution in Eg. (34) is almost identical to that of Eq.)(3Xxcept now the regularization
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of the regression solution occurs over the magnitudeaghregression coefficient, rather than
the overall norm. This is a direct effect of having indivitlpaecision variables, rather than a
common precision variable. The result is a regression isoldhat minimizes thesumberof
relevant inputs required to accurately predict the outputch like the Automatic Relevance
Detection (ARD) framework in neural networks (Neal, 1994hisTis also intuitively apparent
from the marginal prior ovels shown in Fig. 6(b)—that is, the marginal priorlefrom Eq. (31),

which favorssparsesolutions which lie along the (hyper-)spines of the disttidn.

While the regularization previously discussed in Sec. 4dsesful in situations wheree-
dundantinformation is to be regularized but not eliminated in thgression, this current form
of regularization (i.e., regularizing the number of inpussdesirable when the input contains

information that igrrelevantto predicting the output.

Note that the graphical models of Figs. 5(a) and 6(a) are txiemes in a spectrum of
regularization options. One can certainly conceive of nedewhich groups of regression
coefficients are placed under control of individual premsparameters. This situation may
make sense, for example, when we have groups of redundasdrsearoviding input. It allows
an irrelevant signal (set of sensors) to be eliminated ibgsinot contribute to the output. At
the same time, it allows a relevant set to exploit the rednoglaf information within its group

to provide a more robust input signal.

4.3 Alternative Posterior Factorization

In Secs. 4.1 and 4.2, we made the assumption that the postesiiobution factorized over
the regression coefficients, and their precisiona (or «,,, in Sec. 4.2). We can relax this as-

sumption if we make a small modification to the graphical nhtalestain analytical tractability.
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Fig. 7(a) shows an alternative to Fig. 5(a), which can benissd by the following conditional

distributions:

yi‘zi ~ Normal (yl, 1TZi, wy)
Zz'm|bm7 &, Ty, ™ NOfm&l(zZ’m; bmxima ¢zm/a)
(35)
bla ~ Normal(b;0,I/«)

a ~ Gamma «; aa 0, bao)

The dependency of;,,, on the precisiony may seem unnecessary, but Gelman et al. (2000)
provide a justification: itis reasonable to assume that#nerce irnz;,, scales with the variance

in b,,, since increasing our uncertainty in the priorgf should imply a corresponding increase
in the uncertainty ofz;,, as well. In this case, we will obtain a joint posterior distrion
Q(b, «), which is then marginalized to get the individual distribas Q(b) andQ(«). The
derivation proceeds in a manner similar to that describe@dermprevious sections. The crucial
difference is that the marginal distribution overs now a product of Student-t distributions

instead of the Gaussian distributions of Secs. 4.1 and &.fdllowing equations summarize
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the marginal posteriors for the graphical model of Fig. 7(a)

Qo) = Gamma(a- Qs ?)a>

Ht mnubma

) Nd

Qo = Qa0 + T

A d N N -1/ N 2
ba = ba,O + 231 2wzm [z; <ZZ2m> - (Z; fm(xi)2 + 77/}zm> (Z; <sz> fm(Xz)> ]

v =20,

i=1

-1
Ul?m = a¢2m (Z fm Xz + ¢zm>

(36)

where(22,) = (zim)” + 02 .

Zm

For the case of individual precision variables, shown in Fig. 7(b), we can derive an
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alternative model to Fig. 6(a), having the following pogiedistributions:

d
- H Gamma(am; Ay, s 8am)
H t ma Mbm’ )

Qq,, = N
am — Yam,0 + 5
-1 N 2
I;am - b m,0 + W Z <sz> - (Z fm Xz +wzm> (Z Zim fm X ) (37)
Al =1 i=1
V= 2a,
N -1 /N
Mo, = (Z fm(xi>2 + ¢zm> (Z (2im) fm(XZ>>
=1 =1

where(z2 ) = (zim)” + o? . This approximation can be used in conjunction with a distibn
over the noise parameter, to derive a form of robust regression which is less sensttive
outliers than in our original formulation (where the preuhe distribution over the output is a

Gaussian).

4.4 Initialization of Parameters

A few comments should be made regarding the initializatibprimrs used for the models
in Secs 4.1, 4.2 and 4.3. Specifically, the initial hyperpeeter valuesa, o, b, o}—or, for
the ARD model{a,,, 0. bam,o}izl—need to be set before running the EM algorithm. We set

., 0 andb,,, o so that the prior distribution over,, is uninformative or “flat”, using values
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of aa,, 0 = ba,,0 = 1078, for allm = 1,..,d. This means that the initial mean of, is 1,
with high uncertainty, i.e.q,,, has a rather flat prior distribution. These initial hypegraeter
values can be used for all data sets and need never be motlifeedise these values for all our

experiments and data sets.

4.5 Obtaining Confidence Intervals

Given any of the two versions of VBLS, it is easy to obtain pcéde distributions over
regression outputs at query points. Marginalizing over hluglen z;,, «,, variables in the

model gives us the following distribution ovgfx, D, whereD is the training data set.
p(y|x, D) = Normal (y; (b)T x, 1, + 17,1 + XTbe) (38)

whereW , is the noise variance afand,, is the posterior covariance bt

4.6 Extension to Classification

VBLS can be adapted to handle categorical outputs {—1, +1} by changing the target
conditional distributiorp(y;|z;) to a Bernoulli distribution via the sigmoiéhk functiong(x) =

(14 exp(—z))~". In this case, the conditional distribution can be exprsse

1
1+ exp (—y;17z;)

p(yilz:) = g(yi1"z,)
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Since this renders the posterior intractable due to nofugawcy withp(z;|x;), we follow Jaakkola

and Jordan (2000) and introduce an additional lower boumdjuke inequality:

o(0) 2 s e { 25— ol0) (- €

wherep(¢) = tan(£/2)/4¢ and¢ is the variational parameter for the family of lower bounds
to g(x) (see Fig. 8). Hence, we can lower bound the likelihpog|z;) by the parameterized

versionp(y;|z;, &;) as follows:

p(yilz:) = g(yi1" z;)
> p(yilzi; &)

= 9(&) eXp{

yilTZi —&

e (11 - )} (39)

Note that this form still is an exponent of a quadraticzinwhich retains conjugacy with
p(z;|b; x;) and allows us to proceed with our EM derivation as before-kilie additional

step that we must optimize tlig parameters. We again start by writing out the émmplete
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likelihood, which is the joint distribution over the knowndunknown variables in the model:

N d

logp<yi|zi7xi;b7wz) = ng y|Z + logp sz|xzabma¢zm)
i=1 m=1
1

d

N
plylzi; &) + Z >
m=1

=3 [losate) + BB pte) (17 (aal)1 - )

MZWMZ

v

ogp sz|xza m 7v/}zm)

7

'MZ

=1

d N

-3 [ i 3 et

=1

+ const

(40)
where:
1" (22 )1 =17 (z)) (z;)" 1 +17%,,1

andX,, is the posterior covariance of.

As it turns out, this additional approximation only affeth® E-step equations which are

summarized as follows:

E-Step:

()]

zzm - <

(Zim) = bm fm(X:) +

(%)
)

% (% - 20(6)b"80x)

wheres; = 1 + 2p(&)17®,1. The estimation of eack can be done by differentiating the
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expected log likelihood with respect to eagh

Z/ilT <Zz> — &
2

0 9,
(Inp(y,0/X)) = Ing(&) + — (&) (1" (ziz] )1 — &) + consty,

o€, o
1 0p(§;
= 1 g(&) — 5 +26p(E) - *g(f) (17 (22"} 1 — €)

=0

Hence the likelihood is maximized by solving the following:

_aggg» (17 (2 )1~ &) =0

which has solutions dty(¢;)/0¢; = 0 and ats? = 17 (z;z] ) 1. One can show that the solution
Jp(&;)/0& = 0 occurs for the valug; = 0, and actually corresponds tonainimumrather

than a maximum of the expected log likelihood. Hence we hiageatimissible solutions fag

fi = :l:\/ 17 <ZiZ@T> 1

The sign of¢; can be chosen arbitrarily, since the likelihood is an everction of¢;, i.e. both

being:

solutions result in the likelihood taking the same maxinmaue (c.f. Fig. 8). Importantly, the
O(d) complexity of all update equations is preserved even inthension to categorical output
data, making backfitting for classification an equally rakarsd efficient tool as its regression

counterpart.

Bayesian extension: Given that the functional approximation of Eg. (39) allowsto re-
tain the conjugacy necessary for an analytical treatmbatBayesian extensions of Sec. 4 are
straightforward to apply to our classification model. Far tase in which we have a common

shared precision parameteracross all regression parameters (c.f. Sec. 4.1)p,theariables
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still have a posterior Gaussian with the mean update asifsilo

<bm>(n+1) _ ( foil fm(xi)2 ) (bm)(n)
Zij\il fm(xi)2 + Yom <a>

Vo S 1 (% = 20(6) (0) 8 x0) ) finlx)

: () fnl)? + ()

For the case in which we have an individual precision paramef, over each regression
parameter (c.f. Sec. 4.2), thg variables again have a posterior Gaussian with the meaneaipda

as follows:

<bm>(n+1) _ < - sz\; fn(x:)? ) (bm>(n)
Zi:l fm(Xi)Z +Yom <am>

Yom I (% = 20(€0(0) " £(x)) fin(x:)

(S0 Fnlo)? + o () (41)

+

Importantly, the extension of VBLS to categorical outputedpteserves th&(d) complexity

of all update equations.

5 Extensions to Nonlinear Regression

While we derived VBLS in Sec. 4 in the context of a linear modetan also be used for
supervised learning in nonlinear settings. In this sectiamfirst discuss the Relevance Vector
Machine (RVM), a sparse Bayesian learning algorithm thatatps in a framework similar to

generalized linear regression.

The Support Vector Machine (SVM), e.g., (Cortes & Vapnik, 39% a common and popu-
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lar method for classification problems, but it can be extdndeegression, resulting in Support
Vector regression (SVR). We show that the RVM serves as amatiee to SVR and can be
derived as a highly efficient sparse algorithm with VBLS atcitse. In Sec. 6, we illustrate
the computational advantages of this VBLS-RVM algorithm gpegimental synthetic and real

data sets.

5.1 The Relevance Vector Machine (RVM)

Introduced by Bishop and Tipping (2000) and Tipping (2004§ Relevance Vector Ma-

chine (RVM) uses the following generative model:

N
y(x;b) = bk (x,x;) + € (42)

=1

wherek (x, x;) is a bivariatekernelfunction. The RVM create®/ basis functions by centering
a kernel function on each training data pattand these are linearly combined by a regression

vectorb to generate the prediction.

As in SVR, the goal of the RVM is accurate prediction of the ¢éarfginction while retain-
ing as few basis functions as possible in the linear comininaflhat is to say, one hopes that
the regression vectds remains as sparse as possible (as in the framework of spayssi8a
learning). This can be achieved by introducing prior disttions over each element bf as
discussed in Sec. 4.2. The RVM’s success at sparsifyingapession solution hinges on the
fact that this form of prior favors solutions that lie alorgethyper-spines of the distribution.
The introduction of hyperparameters makes it impossiblebtain exact analytical posteriors

(i.e., they are intractable). Nevertheless, we can obtainessful approximate solutions (albeit
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iteratively) by using the Laplace method (Tipping, 2001)factorial variational approxima-
tions (Bishop & Tipping, 2000). Both these approximationsuieg|hyperparmeter updates for

« that need re-estimation of the posterior covariance andhrogla as:

S = (diag<<a>> + <¢i> > kik! ) (43)

1 N
Hb = (¢_) b Z k;y; (44)

=1

wherek; = [k (x1,%;),...,k (xy,%;)] andv, is the noise variance in the targets This
requires arD(N?3) Cholesky decomposition after each hyperparameter updatethéAnum-
ber of data samples increases, the RVM faces an explositie iocdmputational requirements,
similar to that observed in Gaussian processes and supgaidrvnachines. Indeed, as a gen-
eralized linear problem, each new data point adds an exinaeftsion” to the input. Tipping
(2001) mentions several enhancements to the algorithmadimed pruning of unneeded basis
functions, which may help speed up the RVM estimation. Hawethe crux of the problem
remains that the expensive linear regression step mustrb@mped after each hyperparameter

update.

5.2 \Variational Bayesian Least Squares RVM (VBLS-RVM)

We have so far not commented on the nature of the basis funsgtig(x) in our model. Let
us now switch to the RVM framework described above, whéreasis functions are created by

centering a bivariate kernel functidrix, x’) on each individual data point. This implies:

fm() = k('vxm)
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wherel < m < d andd = N. Notice that this transformation makes our VBLS model of
Fig. 6(a) equivalent to the RVM model discussed in Sec. 5ith the notable difference that
VBLS offers a significant advantage over the standard RVM mpmatational complexity. Note
that while the computational complexity of a VBLS update reehlr in the dimensionality of
the problem, it is also linear in the number of data points@&Vd). When cast into the RVM
framework, using/ = N decreases the complexity from thg N?) of RVM to O(N?). In

particular, we would like to emphasize the following:

e At eachupdate of they,, hyperparameters, the RVM requires @(N?) Cholesky de-
composition to re-estimate the regression parametertg disicarding the estimate at the
previous iteration. In the VBLS-RVM, however, the existirgfimate of the regression
parameters provides a good starting estimate, allowingipigate to complete in just a
handful of O(N?) iterations ¢ 10 iterations were sufficient in our simulations). The
savings in computation are especially evident when the mumibdata points (and hence
the effective dimensionality) is large and when the hypeapeeters require many updates

before convergence.

¢ In the initial computations within the graphical model, éesns wasteful to spend large
amounts of computation on estimating parameters accyratben surrounding param-
eters (and hyperparameters) have not converged. One catusérthe VBLS updates to
work with partially converged estimates, such that the bafrcomputation is only ex-
pended to accurately estimate a variable when one is mofeleahabout the variables

in its Markov blanket.

As an illustrative example, Fig. 9 shows results from usirBL8-RVM to fit a toy data

set. This synthetic data set was generated using-flienensional sinc functioginc(xz) =
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sin(x)/x, using the Gaussian kernel:

k (x;, ;) = exp {—)\ (x; — $j)2}

where) > 0.

Even though VBLS-RVM is an order of magnitude faster than taadard RVM, it suffers
no penalty in generalization error or in its ability to spirshe set of basis vectors. More
details on this are presented in Sec. 6.3 where we compaugetieralization performance of
VBLS-RVM on a sinc function approximation problem to othengeetitive nonlinear regres-
sion techniques such as the RVM, SVR, Gaussian Process (Gfepsseon (Williams & Ras-
mussen, 1996) and Locally Weighted Projection Regressid'PR) (Vijayakumar & Schaal,
2000).

Note that Tipping proposes an optimization of the distanegrim )\, based on gradient
ascent in the log likelihood (Tipping, 2001). We can also pate such a gradient for VBLS-
RVM as:

0 <1ogp y, Z|X)) i b; i () ) (@i — 1) s (45)
j=1 771 =1

wherek;; = k(z;,x;). Based on our experience, however, we caution against umaoresi

maximization of the likelihood, especially over distancetrits. Instead, we recommend the

route taken in the Gaussian process community: treat theasgbles as hyperparameters and

place prior distributions over them. Since exact solut@anmstypically intractable, we can either

optimize them b usingnaximum a posteriorestimates (MacKay, 1999) or by Monte Carlo

techniques (Williams & Rasmussen, 1996).
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Note that there are several optimizations suggested byngd@001) and Tipping and Faul
(2003). These include pruning the basis functions whem firecision variables indicate that
they are unneeded and adoptingr@edy(but potentially suboptimal) strategy in which the
algorithm starts with a single basis function and adds datds as necessary. We emphasize
that our implementation of VBLS-RVM performs neither of teeptimizations, although they

are easy to introduce into our framework as well.

In the next section, we demonstrate experimentally on sfitttand real data sets that
VBLS-RVM possesses significant computational advantage over the RMihile retaining
the accuracy and sparseness of the standard RVM. It shouldtied that in the RVM, each
update of the hyperparameters requires a subsequent fulknmersion to compute the pos-
terior distribution over the regression parameters. Irntresh, VBLS-RVM requires no matrix
inversion. Moreover, each update of the hyperparametersesathe distribution over the re-
gression coefficients to shift only by a small amount. VBLSNRW@erforms especially well in
these circumstances since it can use the current (pargatigl) solution and can update the re-
gression coefficient distributions within a very small nwenbf iterations rather than requiring

a complete recalculation of the matrix inverse.

6 Experimental Results

We evaluate VBLS on synthetic and real data sets on both greand classification
problems, comparing it to other standard methods in ordsidwv its competitive performance
and computational advantage. Firstly, we run VBLS on a symltata set where “ground
truth” is known, in order to better evaluate its performanca controlled setting. Then, we

apply VBLS, along with other standard methods, on neuropthygical data sets. Specifically,
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we would like to predict the electromyographic (EMG) adfivof muscles from the neural
data recorded in the primary motor (M1) cortices of monkeygjer the assumption that the

relationship between neural and muscle activity is appnexely linear.

We then move on to benchmark regression and classificatitansg#is. We evaluate the
generalization ability of VBLS-RVM along with state-of-tta@t regression tools on popular
nonlinear regression benchmark data sets. The algoritisnassed in Sec. 2 are meant for
linear regression problems and, hence, are unsuitable for thedi@@ar regression benchmark
data sets. Instead, we will compare VBLS-RVM to common n@admregression methods
such as the RVM, SVR, Gaussian process (GP) regressiongdWvdl& Rasmussen, 1996) and
Locally Weighted Projection Regression (LWPR) (Vijayakuma$éhaal, 2000).

Finally, we evaluate VBLS-RVM on benchmark classificationlgems. We compare the
performance of VBLS-RVM to that of standard classificatiortmoels such as the RVM classi-
fier and the SVM. Since the benchmark data sets that we consiuddve two-class problems,
we also include logistic regression for comparison sinée suited for classification problems
with only two classes. Even though the algorithms survepesidc. 2 are for regression prob-
lems and could be augmented, making them suitable for Gtzeg&n problems by passing the
outputs through a sigmoid function, we omit comparisonsémt, choosing to draw compar-

isons between classifiers instead.
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6.1 Synthetic Data
6.1.1 Data sets

We generated random input training data consisting of 16@dsions, 10 of which were
relevant dimensions. The other 90 were either irrelevamedundant dimensions, as we ex-
plain below. Each of the first 10 relevant input dimensions weawn from a Norma0, 1)
distribution. We then applied a random 10-dimensionaltiatematrix to create input data with
dimensions that are linear combinations of the originar@tated) 10-dimensional data. The
output data was then generated from the relevant input dig the vectob ¢ R1°%!, where
each coefficient ob, b,,, was drawn from a Normé&), 100) distribution. Noise of varying

levels was added to the outputs.

Noise in the outputs was parameterized with the coefficibdéterminationy?, of standard

linear regression, defined as:

whereo? is the variance of the outputs ang  is the variance of the residual error. We added
noise scaled to the variance of the noiseless outpsteh that?,,,, = coZ, wherec = 5 — 1.
Results are quantified as normalized mean squared errorsEj)Mt is, the mean squared
error on the test set normalized by the variance of the ositpithe test set. Note that the best
normalized mean squared training error that can be achigyéae learning system under this
noise level isl — 72, unless the system overfits the data. We used a valug f0.8 for high

output noise and a value of = 0.9 for lower output noise.

A varying number of redundant data vectors was added to the data, generated from ran-
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dom convex combinations of the 10 relevant vectors. Finalyadded irrelevant data columns,
drawn from a Normal(0,1) distribution, until a total of 10fput dimensions was reached, gen-

erating training input data that contained irrelevant asdlindant dimensions.

We created the test data set in a similar manner except thanplit data and output data
were left noise-free. For our experiments, we consideregnghstic training data set with
N = 1000 data samples and a synthetic test data set Witata samples. We examined the
following four different combinations of redundant, and irrelevant;, input dimensions in

order to better analyze the performance of the algorithmdiféerent data sets:

1. r = 0,7 =90 (all the 90 input dimensions are irrelevant)
2. r=30,i=60
3. r=260,7=30

4. r =90, ¢ = 0 (all the 90 input dimensions are redundant)

6.1.2 Methods

We compared VBLS to four other methods that were previoustgideed in Sec. 2: i) ridge
regression, ii) stepwise regression, iii) PLS regressimth ig) LASSO regression. For ridge
regression, we introduced a small ridge parameter valu@df to avoid ill-conditioned matrix
inversions. We used Matlab’s “stepwisefit” function to ruemvise regression. The number of
PLS projections for each data set fit was found by leave-anemss-validation. Finally, we

chose the optimal tuning parameter in LASSO regressiorgusiiold cross-validation.
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6.1.3 Results

For evaluation, we calculated the prediction error on Hegsetest data, using the learned
regression coefficients from each technique. Results argifjgd as normalized mean squared
errors (hAMSE). Fig. 10 shows the average prediction ernrondiseless test data, given training

data where the output noise is either low & 0.9) or high ¢? = 0.8).

All the algorithms were executed on 10 randomly generatésl gfedata. The predictive
NMSE results reported in Fig. 10 were averaged over the a3 trNote that the best training
NMSE values possible under the two noise conditions ared.thé low noise case and 0.2
for the high noise case. The training nMSE values were odhiibe both graphs, since all

algorithms attained training errors that were around thaeeki possible values.

From Figs. 10(a) and 10(b), we see that regardless of outpsé rhevel, VBLS achieves
either the lowest predictive nMSE value or a predictive nM&liile comparable to that of
the other four algorithms. In general, as the number of rddohinput dimensions increases
and the number of irrelevant input dimensions decreasegrediction error improves (i.e., it
decreases). This may be attributed to the fact that redwydarthe input data provides more

“information”, making the problem easier to solve.

The performance of stepwise regression degrades as theenwhiedundant dimensions
increases, as shown in Figs. 10(a) and 10(a), due to itslityatioi cope with collinear data.
LASSO regression appears to perform quite well, compardelL® regression and ridge re-
gression, confirming previously published results thatit produce robust sparse regression

solutions.

In summary, we can confirm that VBLS performs very well—as &slor better than classi-

cal robust regression methods (such as LASSO) on syntlesti tinterestingly, PLS regression
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and ridge regression are significantly inferior in probleheg have a large number of irrelevant
dimensions. Stepwise regression has deteriorated peafmenas soon as co-linear inputs are

introduced.

6.2 Predicting EMG Activity from Neural Firing

6.2.1 Data sets

We analyzed data from two different neurophysiologicaleskpents (Sergio & Kalaska,
1998; Kakei, Hoffman, & Strick, 1999) involving monkeysitrad to perform different arm
movements while having their M1 neural firing rates and EM@vayg recorded. The first ex-
periment (Sergio & Kalaska, 1998) consisted of a monkey alpaltied either a movement or
isometric force to a manipulandum in a center-out task ihtediyections, equally spaced in a
horizontal planar circle. They recorded neural activity ®M1 neurons in all conditions, along
with the EMG outputs of 11 muscles, resulting in 2320 datagasifor each neuron/muscle
pair. In the second experiment (Kakei et al., 1999) a monkeytained to perform eight differ-
ent combinations of wrist flexion-extension and radialanimovements while in three different
arm postures. The data set consisted of neural data of 92 Mbmethat were recorded at all
three wrist postures, along with the resulting EMG outptifg contributing muscles, resulting
in 2616 data samples for each neuron/muscle pair. In allrexpets, each data sample con-
sisted of the average firing rates from a particular neureeréged over a window dfdmsec)

and the corresponding EMG activation from a particular neusc

The goal of the analysis was to determine how well VBLS compé&weother techniques

when reconstructing EMG data of each muscle. The relatiprisétween neural and muscle
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activity is assumed to be linear, such that the basis funstio VBLS are simply a copy of the

respective input dimensions, i.8,(x) = x,,.

6.2.2 Methods

To analyze the data set, we applied VBLS, as described in S&caldng with a selection
of methods previously discussed in Sec. 2: i) ridge regoess) stepwise regression, iii) PLS
regression and iv) LASSO regression. We omitted the othéhods due to unsuitable model

assumptions or computationally expensive procedures.

A baseline comparison of good EMG construction was obtathesligh a limited combi-
natorial search over possible regression models. Thisoapprserved as our baseline study
(referred to ModelSearch in figures) and served as our “gtaddard”, with a particular model
being characterized by the subset of neurons used to ptedi@MG data. For a data set with

n neurons, the number of possible models that exist for aquéati muscle is

Z =271

since the order of contributing neurons is not importanty@@mbinations not permutations
of neurons are considered). The number of possible modets gn the expression above is
too large for an exhaustive search. As a result, for Modet®eave considered all possible
combinations of neurons of up tosubsebf the total number of neurons in the data set. For
example, we considered onpossible combinations of up to 20 neurdis the Sergio and
Kalaska (1998) data set to gi2é&’ — 1 possible models instead of the full, exhaustve — 1

possible models to search over. Even so, ModelSearch eshs@veral weeks of computation
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on a 30-node cluster computer. We determined the optimdigirnee subset of neurons using
cross-validatiohand used Ordinary Least Squares regression to calculatathiig and gen-
eralization performance. For both the Sergio and Kalas®8§)Land Kakei et al. (1999) data
sets, the cross-validation procedure used in baseling imdelSearch) was used to determine
the optimal subset of neurons and was done in the contexedifdhavorial experiments and not
in a statistically randomized way. While we realize croskdedion has a danger of overfitting,
the purpose of ModelSearch is to serve as a method for cosgpetio evaluate the performance
of all algorithms and to give some indication of a baselinédgrenance that is achievable using
a crude combinatorial search of a subset of models. We cadpdodelSearch with ridge
regression, stepwise regression, PLS regression, LAS§@ss&on and VBLS. We used the
same validation sets for these five algorithms as in Modet®ea order perform a consistent

comparison.

For ridge regression, we introduced a small ridge parametiele of 10~1° to avoid ill-
conditioned matrix inversions. We used Matlab’s “step#is&unction for stepwise regression.
The number of PLS projections for each data fit was found byeleme-out cross-validation.
Finally, the optimal value of the open parameter in LASSQesgion was chosen using cross-

validation.

The baseline method ModelSearch identified a subset of ne@®relevant. Table 1 shows
the percentage match of relevant neurons found by the tigusj relative to the relevant neu-

rons found by ModelSearch. The final set of relevant neursesl in Table 1 was reached by

4 8-fold cross-validation was used for the Sergio and Kald$R88) data set (with a training
set consisting 050% of data and two test sets containi2@ of the data each). 6-fold cross-
validation sets were used for the Kakei et al. (1999) daténg#t the data split evenly between

a training set and a test set).
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each algorithm (except VBLS) by taking the common neuronaddo be relevant over the 8
cross-validation sets for the Sergio and Kalaska (1998 det (or 6 cross-validation sets for
the Kakei et al. (1999) data set). The relevant neurons foyndBLS and reported in Table 1
were obtained by using the entire data set since VBLS doe®qatre the data be divided into

separate training or test sets.

Inference of relevant neurons in PLS was based on the subspatned by the PLS pro-
jections, while relevant neurons in VBLS were inferred frdme tmagnitude of thex vector
(the corresponding,,, of an irrelevant input dimensiom would have an extremely large value
compared to they values of the relevant dimensions such that we can use éhtidegalue
to find irrelevant dimensions) The number of relevant neurons from stepwise regressidn an
LASSO regression were determined from the inputs that weladed in the final model. Note
that since ridge regression retained all input dimensithnis algorithm was omitted in relevant

neuron comparisons.

6.2.3 Results

Fig. 11 shows that EMG traces appear to be, in general, wetligtable from M1 neural
firing. In particular, VBLS had a generalization error congide to that of the baseline study.
Fig. 12 illustrates the EMG trace predicted by VBLS for a sanpluscle (muscle 7) from
the Sergio and Kalaska (1998) neural data set. Fig. 11(bystigat all algorithms achieve

SIf we choose to factor the marginal posterior so tha¥%, b, o) = Q(Z)Q (b, «) such that
the marginal distribution fob is a Student-t distribution, then we can perform t-testshan t
regression coefficients to find relevant dimensions, usisgaificance ofp < 0.05. Please

refer to Ting et al. (2005) for more details on this.
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similarly low prediction errors on the Kakei et al. (1999una& data set. On the Sergio and
Kalaska (1998) data set, however, ridge regression, ssepmegression, LASSO regression
and PLS performed far worse, with ridge regression attgitive worst error. The difference
between prediction errors on both neural data sets sugipastthe Sergio and Kalaska (1998)

neural data set is somehow much richer and hence, more nfjialieto analyze.

Note that the average number of relevant M1 neurons foundBiySAaveraged over all 11
muscles in the Sergio and Kalaska (1998) data set and avkoageall 7 muscles in the Kakei
et al. (1999) data set) was slightly highéman ModelSearch. This is hardly surprisingly, given
that ModelSearch didot consider all possible combinations of neurons in both rielaia sets.

In contrast, VBLS considered all 71 neurons in the Sergio aaldska (1998) data set and all

92 neurons in the Kakei et al. (1999) data set.

Table 1 attempts to compare how the various methods farerinstef finding relevant
neurons, using the results of ModelSearch as a baselinearsap. As a result, a higher
percentage match in the table does not necessarily meaththatethod should result in a
lower prediction error. Regardless, we see from Table 1 treatelevant neurons identified by
VBLS coincided at a very high percentage with those of Modat&g while PLS regression

and stepwise regression had inferior outcomes.

LASSO regression matched a high percentage of relevant Mdons in the Kakei et al.
(1999) data set, but failed to perform as well on the Sergbkealaska (1998) data set. As an
aside, itis possible to use VBLS as a pre-processing stepltweghe search space of possible

models for ModelSearch to consider.

5More details on the neural interpretation of this analysis lbe found in Ting et al., (2005,

2008).
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The consistent and good generalization properties of VBL&llareural data sets, as shown
in Figs. 11(a) and 11(b), suggests that the Bayesian appadddBLS sufficiently regularizes
the participating neurons such that no overfitting occuespde finding a larger number of
relevant neurons. The performance of VBLS on these partiguthfficult data sets shows
that it is a viable alternative to traditional generalizewar regression tools. Even with the
additional Bayesian inference for ARD, it maintains its aitjpnic efficiency since no matrix
inversion is required. While VBLS is an iterative statistioa¢thod, which performs slower
than classical “one-shot” linear least squares methoeés ¢in the order of several minutes for
the data sets in our analysis on a standar) RCachieved comparable results with our baseline

combinatorial model search, which took weeks on a clusterpuder.

6.3 Benchmark Regression Problems

6.3.1 Data sets

To evaluate the generalization ability of VBLS-RVM, we comgxrit to other state-of-the

art nonlinear regression tools on the following benchmatasiets:

¢ the synthetic sinc data set (generated in the same way amdi(#001))
e the Boston housing data set

¢ the Abalone data s&t

Pentium IV class machine, 1.7GHz

8Both the Boston housing and Abalone data sets are availalotetfre UCI repository.
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e the Netflix prize data sét

The sinc data set was constructed to have 100 uniformlyespsamples i—10, 10] and
uniform noise in[—0.2,0.2] was added to the targets. The Boston housing data set had 14
attributes and was split randomly, in 10 different randoliispnto a training set of 404 samples
and a test set of 102 samples (e.g., 20% of data used for tégharrest for training). The
Abalone data set had 10 attributes and was downsampled tsjpihtdsets, with also 20% of
the data randomly selected for test and the remainder foira(i.e., 3327 samples for training

and 850 samples for test).

The Netflix prize data set consisted of 17770 movies and 4B8@L&tomers, with each
movie having reviews submitted by a small subset of custemEach review consisted of a
rating (from O to 5 stars) and the date that the review was ma&aiestomers were identified
with a unique customer identification number. Movies wese alentified with a unique movie
identification movie, with titles of movies additionallyailable. The data set was downsampled

so that only 355 movies and 1412 customers were randomlgtsele

We formulated the Netflix prize problem as a linear regrespimblem in order to see how
simple linear methods performed on a real-world, completa dat and also to see compare
VBLS to the other methods. The goal was to predict the ratiag #hcustomer: gives to a
movie m, given we have access to all the ratings maovieéhas received and all the ratings
customerc has made. The downsampled data consisted of 7249 samptbasgeagh sample
consisting of a 1767-dimensional input vector (i.e., adl thtings that movien received from
each customer and all the ratings made by custaemehis givesi412 + 355 or 1767 elements

in the input vector) and an output scalar (i.e., the numbstak that customergave to movie

°The data set is available from http://www.netflixprize.com
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m). 10% of the downsample data was used for test, while theirengawas used for training

(i.e., 6524 training samples and 725 test samples).

6.3.2 Methods

For all the benchmark data sets (except for the Netflix prega det), we compared VBLS-
RVM with other algorithms suited for nonlinear regressiogis as the standard RVM, SVR
Gaussian process (GP) regression and Locally Weighteediaj Regression (LWPR). Both
VBLS-RVM and the RVM used Gaussian kernels with distance icgetptimized by 5-fold
cross-validation. The Gaussian process regression tigotised a radial basis function (RBF)

covariance function with automatic hyperparameter oation.

For the Netflix prize problem, we evaluated the followingelim methods that were previ-
ously evaluated in Secs. 6.1 and 6.2: i) ridge regressipstepwise regression, iii) PLS regres-
sion, iv) LASSO regression (using the Gauss-Seidel metti@hevade and Keerthi (2003) in
order to accommodate the size of the data) and v) VBLS. Notdlieanumber of optimal pro-
jection directions to use in PLS regression (i.e., the patank” described in Sec. 2.1.6) was
set t020 after much user tuning—numbers larger than this took faldag to run. Addition-
ally, the number of steps for stepwise regression was cagp2@0. Larger step values were

explored but the running time was excessively long with pogeneralization performance.

RVM and SVR results adapted from Tipping (2001)
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6.3.3 Results

Table 2 shows the normalized mean squared errors on theetesiv@raged over 10 experi-
mental trials. We can see that VBLS-RVM provides an extremeiypetitive solution in terms

of generalization ability when compared to other populgression methods.

In order to examine the level of “sparsification” of the sebasis functions, we compared
the average number of basis functions retained by the RVMR 8vd VBLS-RVM since these
three methods had the ability to retain “relevant” sampleble 3 shows the average number
of relevant samples (known as “relevant vectors” in the Ruithined in the final solution

(averaged over all 10 experimental trials) on the sinc, Boktmusing and Abalone data sets.

The above experiments demonstrate that VBLS-RVM is a cotiygetiegression solution
when compared to other current state-of-the-art stagistreethods, both in its generalization
ability and in its efficacy as a sparse Bayesian learning aglgor However, the main advantage
of VBLS-RVM is in its computation time, relative to the RVM. Vé@mpare the execution time
of the RVM to VBLS-RVM in order to examine how much speed is gdimy incorporating
VBLS into the RVM. Table 4 gives the average execution timeeitosids required by the RVM
and VBLS-RVM for convergence of their regression paramesén@tes on the sinc, Boston
housing and Abalone data sets. The table also shows the nahtraining samplesVyaining,
the number of test samplég.s;and the dimensionality of the inpufs Note that the number of
O(N?) updates td per update cycle of the hyperparameters is very small (a@0Orupdates),
since the solution from the previous update cycle is a vepdgarting point for the iterations
of the next cycle. The results demonstrate that the RVM agmifggantly gain from the iterative

nature of the VBLS generalized linear regression procedure.

The baseline method, Cinematch, used for comparison in tli#ixXNerize competition,
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reported a predictive rmse of 0.9514 on a quiz (unknown) ¢abset’. Table 5 shows the
predictive root mean squared error values (rmse) for alllinear methods evaluated. We can
see that the best performance of a linear method is actuatlgam far off from the baseline
performance of Cinematch—although the test sets used d&eeethif and so, such a comparison
can not be fairly made. VBLS had a comparable performance 93@ regression, but took a
longer time to train than the other linear methods. Howewdike the other methods—with the
exception of LASSO regression—whose training times wepentedafter the optimal values
of open parameters were set/determined, VBLS did not havepey parameters to be set or

cross-validated and performed “out of the box”.

6.4 Benchmark Classification Problems

6.4.1 Data sets

We also evaluated the classification accuracy of the RVM, Sand VBLS-RVM on some
benchmark data sets. To facilitate comparison, we trainddested VBLS-RVM on exactly the
same data used in Tipping (2001), along with an additiorehnerld large-scale data set.The

data sets used for comparison include the following:

¢ Ripley’s synthetic data (Ripley, 1996)
e the Banana data set@i&h, Onoda, & Niller, 2001)

e the Pima Diabetes data set

11 The Netflix Prize competition offers a grand prize for a rmeki@ved that i< 0.8563
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¢ a binary classification problem of the MNIST database of kaitten digits-2

All data sets presented a two-class classification problem.

Ripley’s synthetic data was generated, as described infigp{001), in two dimensions
from mixtures of two Gaussians with the classes overlappuai that the Bayes error is around
8%. A training set ofl00 samples were randomly chosen from Ripley’s origig&)-sample
training data set. The test error was computed using a test 5800 samples. The Banana data
set was taken from the online repository and consisted ofttEd0ing and test splits provided
by Ratsch et al. Each training set h&@D training samples and each test set ha@h samples.
Both had 2-dimensional inputs. The Pima Diabetes set’hdichensional inputs and was split

into a training set witl200 samples and a test set with2 test samples.

Finally, we formulated the MNIST handwritten digit data s&b a binary classification
problem, for the purpose of distinguishing the digit O frolinagher digits (i.e., a binary clas-
sification problem). The complete MNIST database consistsrmary images of handwritten
digits (numbered 0 to 9). It has 60000 training samples, 2G@6t samples and an input di-
mensionality of 784. We conducted experiments with vansizgs of training data in order
to evaluate the performance and run times of various methBds example, we considered

training set sizes of 1000, 3000, 5000 and 10000 samplesanddts of 500 samples.

2 The MNIST data set is publicly available from http://yamciin.com/exdb/mnist. It is a
popular benchmark data set that has been analyzed in vddous by many (e.g., (Lecun,

Bottou, Bengio, & Haffner, 1998; Keerthi, Chapelle, & DeCostg0R)).
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6.4.2 Methods

We compared VBLS-RVM to a RVM classifier, the SVM and logisggression. As men-
tioned previously, the list of algorithms surveyed in Sear@designed for regression problems.
Though we could augment them and make them suitable forifitat®n by passing the out-
puts through a sigmoid function, we omit them, choosingteiad, to make comparisons to

“native” classifiers.

The RVM classifier used a Gaussian kerrgls,,, x,) = exp (=772 || x,, — x,, ||?), with
the width parameter set to0.5. The error/margin trade-off parameters of the SVM were dune
using 5-fold cross-validation. Both VBLS-RVM and the RVM used Gaasskernels with

distance metrics optimized by 5-fold cross-validation.

For the MNIST data set, we evaluated the following methodsia primal SVM of Keerthi
et al. (2006), designed for fast performance on large-stalle sets, ii) the fast RVM of Tip-
ping and Faul (2003), iii) VBLS-RVM and iv) the original RVM dfipping (2001). Other
competitive classifiers, aside from the primal SVM (Keedtal., 2006), include Sparse Multi-
nomial Logistic Regression (Krishnapuram, Carin, Figuairefl Hartemink, 2005) and the
doubly regularized SVM (Wang, Zhu, & Zou, 2006), to list a feMote that the original RVM
does not scale well to large-scale data sets due @(i?é*) computational complexity (per EM

iteration).

6.4.3 Results

Table 6 shows the classification accuracies of all the algos on the benchmark data sets.

Results for the Ripley data set were averaged over 10 exparahteals, while the results for
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the Banana data set were averaged over the first 10 trainingeanhdplits. The classification
errors reported for the Pima Diabetes set was for the givanitig and test sets. We see from
the table that the classification accuracy of VBLS-RVM is cangble to and as competitive as

that of the RVM classifier, SVM and logistic regression.

Table 7 reports the classification percentage accuraciéssbisets, as well as the running
times for each method. The computation time of VBLS was regbwith and without the
pre-processing step (i.e., the one-time step where thaingaand test design matrices of the
RVM’s basis vectors are constructed. The computationa tiMVBLS with pre-processing is
shown in brackets. The construction of the training andresrices (which have dimensions
Niraining X Niraining @Nd Niraining X Niest respectively? takes the bulk of the computation time for
VBLS. As such, it is not surprising that VBLS-RVM takes longentgputational times than the
fast RVM and SVM. The VBLS-RVM could be modified to accommodatge-scale data sets
by greedily adding basis vectors to the design matrix (simo that done in (Tipping & Faul,
2003)).

On average, the fast RVM of Tipping and Faul (2003) perforassdr than the RVM and the
VBLS-RVM—uwhich is unsurprising, given the modified RVM addadis vectors in a greedy
fashion, potentially converging on a sub-optimal modetleled, we see in Table 7 that the fast
RVM is not necessarily the best performing. However, theedpgdvantage that VBLS-RVM

offers over the standard RVM is easily observed in the table.

13 Note thatVyaining @and Niest are the number of training and test samples, respectively.
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7 Discussion

For efficient learning and feature selection, we introduoewa Bayesian technique for lin-
ear regression analysis with automatic regularizatioledalariational Bayesian Least Squares,
focusing on scenarios with large samples of high-dimerdidata that are commonly found in
the application domains of robotics and brain-machinefates. Although derived in a linear
regression model, VBLS can also be extended to nonlineagssigm and classification settings,
as done, for example, in VBLS-RVM. VBLS is competitive with €$&cal linear regression and
other sparse regression techniques and, furthermore,radagquire any manual parameter
tuning, giving it a “black box” statistical property. Thesrative nature of VBLS makes it suit-
able for real-time, incremental learning (when decisiossctto be made quickly) and allows it

to be embedded in other iterative methods to offer a speextivugntage.

One issue is the effect of the variational approximatiordusehe algorithm on the quality
of function fit. One could assume, for example, that VBLS mandtt® overfit, since factorial
approximations to a joint distribution are known to createpeaked distributions. However,
since the factorial approximation is made over the regoassoefficients, a more peaked dis-
tribution ensures only that the regression coefficientchrger to zero, making VBLS slightly

pessimistic and unlikely to overfit.

VBLS can also be applied to other problems such as parametatifidation in noisy high-
dimensional regression (Ting, D’'Souza, & Schaal, 2006Qywgng mixtures of experts or lo-
cally weighted regression in high-dimensional spaces.hé&sé scenarios, use of VBLS can
potentially help overcome numerical matrix inversion @ens that may otherwise make a al-
gorithm too computationally expensive to be viable for hdgimensional or real-time learning.

We are currently pursuing such research directions asefuvork.
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Figure 1. Graphical model for linear regression. Note tmeifg which causes the estimates of

the individual regression coefficients to become coupled in the posterior.
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Figure 2: This figure shows the bounding boxes of the datzdtat level 2 (top figure) and
level 4 (bottom figure) nodes of a KD-tree. The tree is credgdecursively splitting the
hyper-rectangles along the median of longest dimensioheg&hclosed data. Bounding box
information (as well as other statistics) are cached at aade and help speed up querying the

structure.
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(b) Triangle inequality
Figure 3: The top figure shows the nodes at root, first and sklesels of a ball tree (dotted,
dashed and solid balls respectively). The bottom figuretilates the triangle inequality used

to derive computationally efficient bounds on the distaret®ken an arbitrary query point and

the points within a ball.
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(a) Generalized Linear Regression
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(b) Probabilistic Backfitting

Figure 4. We modify the original graphical model for genedl linear regression by inserting
hidden variables;,,, in each branch of the fan-in. This modified model can be soh&adg the

EM framework to derive a probabilistic version of backfitfin
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Figure 5: By associating a single Gamma distributed pretigith the regression vector,
we create a marginal prior ovér that favors minimum-norm solutions, similar to shrinkage

methods such as ridge regression.
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Figure 6: By associating an individual Gamma distributedcigien with each regression
coefficient, we create a marginal prior ovethat favors sparse solutions which lie along the

(hyper)-spines of the distribution.
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(b) Individual priors
Figure 7: We can relax the assumption of factorizatigb ) Q) () between the regression coef-
ficients and their precision variables, by modifying thepdriaal models as shown in this figure.

The marginal posterior distribution over the regressioaffocientsb can now be analytically

derived as a Student t-distribution.
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Figure 8: The left panel shows the logistic function (sohitk line), and two approximations
with the variational parameters setgo= 3 (dashed line), and = 7 (solid thin line). The
points of tangency between the true function and the appration are circled. The right panel

shows the same plots on a log scale.
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Figure 9: The VBLS-RVM solution to fitting data from the “sinftinction. Note that out of
50 data points, only 5 are considered “relevant”. The rethivasis functions (corresponding to

the relevant points, indicated by black circles) are showesamposed.
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(b) Training data with high output noise*(= 0.8)
Figure 10: Average normalized mean squared predictionr éaio synthetic 100 input-
dimensional data, averaged over 10 trials. The number afneght dimension is denoted

by r» and the number of irrelevant dimensions.is
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Figure 11: Average normalized mean squared error for M1aoreyraveraged over all cross-
validation sets and over all muscles. 6-fold cross-valifaivas used for the Kakei et al. (1999)
M1 neural data set, and 8-fold cross-validation was usethtv6ergio and Kalaska (1998) M1

neural data set.
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Figure 12: VBLS predicts muscle activity from neural firingerdor muscle 7 from the Sergio

and Kalaska (1998) M1 neural data set.
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STEP | PLS | LASSO| VBLS

Sergio and Kalaska (1998) M1 neural datasef.2% | 7.4% | 6.4% | 94.2%

Kakei et al. (1999) M1 neural data set || 65.1 %| 42.9 %| 80.6 % | 94.3 %

Table 1: Percentage of M1 neuron matches between the baseloh all other algorithms,

averaged over all muscles in each data set.

RVM | SVR GP | LWPR | VBLS-RVM

Sinc 0.0134| 0.0178| 0.0136| 0.0124, 0.0130

Boston | 0.0882| 0.1115| 0.0806| 0.0846| 0.0837

Abalone| 0.4591| 0.4830| 0.4440| 0.4056 0.4473

Table 2: Average normalized mean squared error (h(MSE) d@dridls of RVM, SVR, GP
regression, LWPR and VBLS-RVM on benchmark regression dasa(sic, Boston housing

and Abalone data sets).

RVM | SVR | VBLS-RVM

Sinc 6.7 | 45.2 4.8

Boston 39 | 1428 57.4

Abalone| 437 | 1320 368

Table 3: Number of “relevant” vectors retained by RVM, SVRIaViBLS-RVM for sinc,

Boston housing and Abalone data sets.
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RVM VBLS-RVM Ntraining ]Vtest d

Sinc 18.71se¢ 6.24 sec 100 100 | 1

Boston 372 sec 155 sec 404 102 | 13

Abalone| 2767 sec 428 sec 3327 | 850 | 10

Table 4: Average computation time in seconds (sec) for RVENABLS-RVM on sinc, Boston

housing and Abalone data set®Vyain, Niest and d are the number of training samples, test

samples and input dimensionality, respectively.
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Training rmse| Test rmse| Time taken
Cinematch (baseline) N/A 0.9514* N/A
Ridge regression 0.7527 18.59 5.83 sec
Stepwise regression 13.39 6.375 1140 sec
PLS regression 0.9399 1.3280 | 247.4 sec
LASSO regression 0.9999 1.0594 | 8.872 sec
VBLS regression 1.0219 1.0443 | 104.7 sec

Table 5: Root mean squared errors (rmse) of ridge regressemyise regression, PLS regres-
sion (where, in the interest constraining the running tithe,maximum number of projections
was capped to 20), LASSO regression and VBLS on a downsametsib of the Netflix Prize
data set. The downsampled data set has 6524 training saen@e&25 test samples, with an
input dimensionality of 1767. Computation time for trainisgshown in seconds. *The results
reported by the baseline, Cinematch, is on a separate testts@as provided by the Netflix

Prize competition.
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Ripley 9.75% | 10.8% |  9.66% 11.37% | 100 | 1000 2

Banana 10.8% | 10.9% 11.2% 11.0% 400 | 4900/ 2

Pima Diabetes 19.8% | 20.1% 19.6% 22.2% 200 | 332 |7

Table 6: Average classification percentage accuraciesamatd classification benchmark
data sets for the RVM, SVM, VBLS-RVM and logistic regressi®&esults were averaged over
10 experimental trials for the Ripley synthetic data set aver ¢he first 10 training and test
splits for the Banana data séX,in, Viestandd are the number of training samples, test samples

and input dimensionality, respectively.
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Niraining | Neest || TESt €rror Time taken
Primal SVM (Keerthi et al., 2006) 1000 | 500 | 13.4% 5.888 sec
Fast RVM (Tipping & Faul, 2003) 1000 | 500 | 11.8% 10.033 sec
VBLS-RVM 1000 | 500 7.6% | 0.9761 sec (55.56 sec)
RVM (Tipping, 2001) 1000 | 500 | 7.6 % 164.9 sec
Primal SVM 3000 | 500 | 14.2% 12.88 sec
Fast RVvM 3000 | 500 9% 10.56 sec
VBLS-RVM 3000 | 500 7.6 % 15.21 sec (401.9 sec
RVM 3000 | 500 | 7.6% 4295.3 sec
Primal SVM 5000 | 500 | 144 % 20.70 sec
Fast RVM 5000 | 500 7.8% 23.23 sec
VBLS-RVM 5000 | 500 7.6% | 56.77 sec (1123.2 sec)
RVM 5000 | 500 7.6 % 1685.7 sec
Primal SVM 10000 | 500 | 14.2 % 38.83 sec
Fast RVvM 10000 | 500 7.6 % 43.51 sec
VBLS-RVM 10000 | 500 7.6% | 238.7 sec (4171.6 sec)
RVM 10000 | 500 N/A N/A

Table 7. Classification percentage accuracies (predictimrs) for the MNIST handwritten
digit data set for training sets of various SizeSining aNd Nies; are the number of training

samples and test samples, respectively. The dimensippélite input data is 784.



