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Abstract

We propose a set of Bayesian methods that help us toward the goal of autonomous

learning systems. Systems that can react autonomously, with minimal human supervision,

have the potential for significant impact, especially in applications with considerable

uncertainty in the environment. In current algorithms, parameter values are set using

heuristic techniques, statistical cross-validation or other search procedures to find the

“right” values. We rely on Bayesian inference as a principled way to eliminate open

parameters, resulting in a black-box-like approach.

We are interested in scenarios where the input data is high-dimensional (and many in-

put dimensions may be redundant or irrelevant) and where real-time, incremental learning

may be needed. Such data sets are common in the domain of robotics and brain-machine

interfaces, which are the main areas of evaluation in this dissertation. We start by ex-

amining the problem of regression since classification can be performed by interpreting

regression outputs in a binary way.

This dissertation first introduces a set of autonomous Bayesian methods that learn

from data with the following properties: a high number of input dimensions, noise in

input data, and outliers. All these methods can be leveraged together to develop a

local Bayesian kernel shaping framework for nonlinear regression. The Bayesian kernel

xii



shaping algorithm we propose is the first step towards realizing real-time autonomous

learning systems. Even though the version described in this thesis is in batch form, it

is computationally efficient and can be used in not only local methods, but also global

nonlinear methods such as Gaussian processes for non-stationary function approximation.
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Chapter 1

Introduction

1.1 Autonomous Learning

A long-standing dream of machine learning is to create autonomous learning systems

that can operate, with minimal human supervision, in home, research and industrial

applications. An autonomous learning system learns from experience, not requiring any

application-specific tuning of parameters by the human user, while having a “black-box”-

like ability to work across different hardware platforms and environments. Manual tuning

parameters, such as those used in gradient descent or structure selection, need to be

minimized and, ideally, avoided.

Most of the current learning algorithms require some amount of application-specific

tailoring. One of the primary challenges in machine learning is to develop algorithms that

are applicable across a broad range of applications with a minimal amount of modification.

While a universal black box may not be possible for all systems, significant progress can

be made in some domains.
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In this dissertation, we address learning problems in sensor-rich and data-rich environ-

ments, such as those provided by autonomous vehicles, surveillance networks, biological

systems and robotics. In these scenarios, the input data is high-dimensional and is used

to make predictions, often in real-time.

1.1.1 What is Autonomous Learning?

Our goal is to devise algorithms that can deal autonomously and efficiently with high

dimensional data which is typically contaminated by noise, redundancy and irrelevant

dimensions. The algorithms must learn nonlinear functions, potentially in an incremental

and real-time fashion (where samples are available sequentially, one at a time, instead of

all together at the outset), for robust classification and regression. In this dissertation,

an autonomous learning algorithm is loosely defined and considered to be an algorithm

that can perform on different systems, environments and data sets, with minimal tuning

of parameters, interference, and involvement by the user.

1.1.2 Autonomous Learning and Model Complexity

Given our goal of autonomous learning systems, the challenge of the learning process is to

remove any tuning of model parameters needed by the user and to include it as part of the

inference procedure in order to find a model that balances data fitting and model com-

plexity, i.e., Occam’s razor. Existing approaches that attempt to find this “right” amount

of model complexity include cross-validation (Stone 1974, Stone & Brooks 1990), early

stopping (Finnof, Hergert & Zimmerman 1993), a penalized cost function with some reg-

ularization criterion—such as minimum description length (Rissanen 1978) or the Akaike

2



Information Criterion (Akaike 1974), maximum-margin approaches (Taskar, Chatalba-

shev, Koller & Guestrin 2005), and maximizing Bayesian evidence (Mackay 1992), to

name a few. It is this last approach of maximal Bayesian evidence that we choose to

adopt for the following chapters.

1.1.3 Why Bayesian?

A statistical Bayesian framework offers many advantages. These include automatic com-

plexity regularization, tractable approximate inference (when combined with approxi-

mation methods to reduce computational complexity)—which is especially important in

data-rich, real-time domains, confidence measures of performance, the incorporation of

domain (or prior) knowledge, and integration in other probabilistic systems.

However, Bayesian approaches require that prior distributions be chosen, and this

is typically done for analytical convenience rather than real knowledge of the problem.

Additionally, computationally intractable integrals arise that are hard to solve analyti-

cally (Jordan, Ghahramani, Jaakkola & Saul 1999).

1.2 Approximate Inference Methods

Various approximation methods have been proposed to cope with the intractable integrals

that result from Bayesian inference. Some of these include variational approximations,

e.g., (Jordan et al. 1999, Ghahramani & Beal 2000, Beal 2003), Expectation-Propagation

(EP) (Minka 2001), Laplace’s method (MacKay 2003, Bishop 2006) and Markov Chain

Monte Carlo (MCMC) sampling methods, e.g., (Gelfand 1996).

3



Variational methods, EP and Laplace’s method are deterministic techniques which

approximate the marginal posterior distribution with a Gaussian. In contrast, Monte

Carlo sampling methods are nondeterministic and rely on the law of large numbers to

evaluate the integral. Some of these methods, such as EP and variational EM, are iter-

ative. All attempt to choose the best approximation to the probability density function

from within a tractable class of distributions (e.g., Gaussian, exponential, concave or

convex, factorized, etc.).

Before we delve into the details of various approximate inference methods, let us

introduce, in the next section, a few quantities used in Bayesian learning.

1.2.1 Bayesian Learning: Quantities of Interest

To perform Bayesian inference, let us first assume a data set D has been observed and

that we want to estimate the underlying model of how the data was generated. We denote

the model parameters as θ and M as the model.

In a Bayesian framework, probability distributions are placed over parameters in order

to describe beliefs and uncertainties about parameter values. The prior distribution p(θ)

describes the belief about the true values of θ. We can account for the information in the

observed data D and use it to update the belief in θ to produce a posterior distribution

p(θ|D).

The three quantities of interest in Bayesian learning consist of the following:

• Evidence for model M :

p(D|M) =

∫

p(D, θ|M)dθ =

∫

p(D|θ)p(θ|M)dθ (1.1)
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Given a maximal Bayesian evidence framework, our goal is to maximize the maxi-

mize to trade off data fitting with model complexity. We can do this by maximizing

the marginal likelihood, which can be arrived by integrating out model parameters

from the evidence.

• Posterior distribution of parameters:

We can use Bayes’ rule to compute the posterior distribution as:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(1.2)

where p(D|θ) is the likelihood and p(D) is the marginal likelihood.

• Predictive distribution:

Given a new data sample x, the predictive distribution is:

p(x|D) =

∫

p(x, θ|D)dθ =

∫

p(x|θ)p(θ|D)dθ (1.3)

Notice that the posterior distribution p(θ|D) is needed to calculate the predictive

distribution.

A common problem is that posterior p(θ|D) cannot be evaluated in closed form be-

cause the marginal likelihood p(D) consists of an integral that is analytically intractable.

Indeed, the integrals in Eq. (1.1) and (1.3) may also be hard to solve analytically. The

next section describes some of the methods to approximate analytically intractable inte-

grals.
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1.2.2 Variational Approximations

Variational methods have been applied in the fields of physics, statistics and control

theory in the form of calculus of variations, linear and non-linear moment problems and

dynamic programming. In the recent past, variational methods have been developed

for approximate inference and estimation in the probabilistic models commonly found in

machine learning. Variational methods convert a complex problem into a simpler one by

decoupling the degrees of freedom in the original problem. The decoupling is achieved

by introducing additional parameters, known as variational parameters, that must be

optimized for the problem.

In this thesis, we leverage variational approximations in order to get a tractable lower

bound to the marginal log likelihood. In particular, we use two approximations: a factorial

variational approximation and a variational approach on concave or convex functions.

Variational Mean Field Theory: Variational mean field theory approximates a com-

plex distribution by fully factorizing it into individual component distributions. Mean

field theory has been used by Jaakkola & Jordan (2000), Jordan et al. (1999) and Ghahra-

mani & Beal (2000) (the latter, under the name “variational Bayes”), to name a few, for

finding the lower bound to the marginal likelihood and for providing analytical approxi-

mations to parameter posterior distributions.

The factorial variational approximation can be incorporated to the Expectation-

Maximization (EM) algorithm (Dempster, Laird & Rubin 1977) to optimize iteratively a

lower bound to the marginal likelihood. The iterations of variational Bayesian EM con-

sist of a variational E-step where the hidden variables are inferred using an ensemble of
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models (according to their posterior probability) and a variational M-step where a poste-

rior distribution over model parameters is inferred. Instead of adopting a fully factorized

assumption of the posterior distribution, it is possible to use a more structured mean

field approach, where the variational distribution factors across partitioned, disjoint sets

of variables (Beal 2003).

Convex Duality: Variational transformations can also be achieved by convex dual-

ity (Rockafellar 1972) principle to obtain lower (or upper) bounds on a function. The

principle of convex duality states that a concave function f(x) can be represented via a

conjugate or dual function as follows:

f(x) = min
λ

{
λT f(x) − f∗(λ)

}
(1.4)

where the conjugate function f∗(λ) can be obtained from the dual expression:

f∗(x) = min
x

{
λT (x) − f(x)

}
(1.5)

The framework of convex duality applies to convex functions as well, with minimum

operator replaced by the maximum operator.

A disadvantage with factorized variational methods is that the quality of the ap-

proximation may not be necessarily high, depending on the dependency between hidden

variables. Note that, aside from the two briefly sketched here, there exist other vari-

ational approaches for approximate Bayesian inference. These include the Bethe and

Kikuchi family of variational methods (Yedidia, Freeman & Weiss 2001), approximations
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to bound partition functions with higher order polynomials (Leisink & Kappen 2001),

more elaborate variational methods for upper bounds on partition functions (Wainwright,

Jaakkola & Willsky 2002).

1.2.3 Expectation-Propagation

EP is an iterative algorithm that tries to choose the best approximation of the posterior,

within some tractable class of distributions. It is an extension of assumed-density filtering

(ADF), e.g., (Maybeck 1979), which is a one-pass sequential method for computing an

approximate posterior distribution. ADF processes observations sequentially, one by one,

updating the posterior distribution after a data sample is observed. The sequential nature

of ADF means that information that is discarded early one may turn out to be important

at a later step. In contrast, EP makes additional passes, including information from later

observations so that choices made earlier can be refined. This iterative refinement means

that the resulting approximated posterior is independent of observation order and more

accurate than ADF.

EP exploits the fact that the posterior can be expressed as a product of simpler

parametric terms (i.e., in the exponential family). These simpler terms are approximated

such that the Kulback-Leibler (KL) divergence (Kulback & Leibler 1951) between the

true posterior and the approximated posterior are minimized. The result is a system

of coupled equations that are iterated to reach a fixed-point. While EP has no issues

with local minima and is typically faster than other approaches, it is not guaranteed to

converge.
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1.2.4 Laplace Approximations

Laplace’s method approximates the posterior by a Gaussian distribution, which is found

using a second order Taylor expansion around the model. Since the approximation is

symmetric and locally fitted around the mode, the tails of the true posterior may not be

covered, giving a poor approximation.

1.2.5 MCMC Sampling

MCMC methods generate samples from the posterior p(θ|D) by using evaluations of the

unnormalized posterior p(D|θ)p(θ). The statistics of the samples are used to approximate

properties of the posterior distribution. A Markov chain of parameter values θ0, θ1, ..., θn

is generated such that the distribution of θn asymptotically reaches that of the true

posterior as the sequence length n increases.

A difficulty with MCMC sampling methods is determining how many steps are needed

in order to converge to the desired distribution, i.e., the Markov chain’s mixing time.

However, MCMC sampling methods are advantageous when the posterior has a complex

shape that is not necessarily Gaussian. Popular MCMC sampling methods include the

Metropolis-Hastings method (Metropolis, Rosenbluth, Rosenbluth, Teller & Teller 1953,

Hastings 1970), Gibbs sampling (Geman & Geman 1984), importance sampling (Robert &

Casella 2005) and slice sampling (Neal 2003). More details on MCMC sampling methods

can be found in (Neal 1993) and (MacKay 2003).
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1.3 Key Challenges

In this dissertation, we consider supervised learning problems and are interested in sce-

narios with many data samples, high-dimensional data and where real-time learning (and

fast computation) is needed. In particular, we focus on regression problems and learning

models. Typical machine learning domains, in contrast, deal with offline analysis of train-

ing data and do not need any “online” learning, i.e., models are not updated or re-learnt

during test time.

Challenges to autonomous real-time learning can be divided into modeling challenges

and algorithmic constraints. The existence of noise in inputs, outliers, irrelevant and

redundant variables, and high dimensions pose modeling challenges for algorithms. Ad-

ditionally, we would like algorithms to satisfy the following algorithmic constraints: be

runnable in real-time, computationally efficient, and autonomous (requiring no cross-

validation or tuning of parameters). There exist a wealth of methods in the fields of

machine learning and statistics that address some—bust not all–of these challenges and

least of all not in an “autonomous” way.

For the rest of the manuscript, we will be putting the pieces of the puzzle together,

introducing individual autonomous algorithms that progressively build on each other and

that address larger subsets of challenges. Leveraging these autonomous methods, we will

describe an automatic kernel shaping algorithm that learns the region of data samples

that a local model should consider and cover. The algorithm can be applied not only

local methods but global methods.
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1.4 Dissertation Outline

The remainder of this dissertation is organized as follows:

• Chapter 2 discusses how to perform linear regression in high-dimensional domains,

where the input data has a large number of input dimensions—many of which are

redundant or irrelevant.

• Chapter 3 considers the problem of high-dimensional linear regression when the

input data is contaminated with noise. In such situations, typical regression meth-

ods are unable to handle noise in the input data and, consequently, produce biased

estimates.

• Chapter 4 considers more realistic sensory data where outliers, as well as noise,

are present in observed data. We propose a Bayesian formulation of weighted least

squares that can automatically detect outliers in real-time. We incorporate this

idea into the Kalman filter in order to learn an outlier-robust filter.

• Chapter 5 moves on to the nonlinear high-dimensional regression problem. We intro-

duce a Bayesian kernel shaping algorithm that automatically learns the bandwidth

of a local model. We demonstrate that Bayesian kernel shaping can be leveraged

in not only local methods (such as locally weighted regression) but also in global

methods that are linear in the parameters (such as Gaussian process regression).

• Chapter 6 concludes with a summary of contributions presented in this thesis and

a discussion of future work.
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Chapter 2

High Dimensional Linear Regression

In recent years, there has been growing interest in large scale analyses of brain activity

with respect to associated behavioral variables. In the area of brain-machine interfaces,

neural firing has been used to control an artificial system like a robot (Nicolelis 2001, Tay-

lor, Tillery & Schwartz 2002), to control a cursor on a computer screen via non-invasive

brain signals (Wolpaw & McFarland 2004), or to classify visual stimuli presented to a

subject (Kamitani & Tong 2004, Haynes & Rees 2005). The brain signals are typically

high dimensional, with large numbers of redundant and irrelevant signals. Linear mod-

eling techniques like linear regression are among the primary analysis tools (Wessberg &

Nicolelis 2004, Musallam, Corneil, Greger, Scherberger & Andersen 2004) for such data.

However, the computational problem of data analysis not only involves data fitting, but

also requires that the model extracted from the data has good generalization properties.

Good generalization is crucial for predicting behavior from future neural recordings. Two

examples where accurate behavior prediction is relevant include i) the continual online

interpretation of brain activity to control prosthetic devices and ii) longitudinal scientific

studies of information processing in the brain.
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Surprisingly, robust linear modeling of high dimensional data is non-trivial as the

danger of fitting noise and numerical problems is high. Classical techniques like ridge

regression, stepwise regression (Draper & Smith 1981) or Partial Least Squares (PLS)

regression (Wold 1975) are prone to overfitting and require careful human supervision for

useful results.

Other methods such as Least Absolute Shrinkage and Selection Operator (LASSO)

regression (Tibshirani 1996) attempt to shrink certain regression coefficients to zero by

L1-norm regularization, resulting in interpretable models that are sparse. However,

these L1-regularized regression methods have typically an open parameter, such as a

regularization parameter, that needs to be set or optimized. Some of the methods

for solving L1-regularized regression problems include convex optimization techniques

such as sequential quadratic programming or interior-point methods, e.g., (Kim, Koh,

Lustig, Boyd & Gorinevsky 2007), coordinate descent methods (Friedman, Hastie &

Tibshirani 2007), the Gauss Seidel method (Shevade & Keerthi 2003), generalized itera-

tive scaling (Goodman 2004), and iterative re-weighted least squares (Lokhorst 1999, Lee,

Lee, Abeel & Ng 2006).

In this chapter, we focus on improving linear data analysis for the high dimensional

scenarios described above. Our goal is to develop a statistically robust “black-box” ap-

proach that automatically detects the most relevant features for generalization. With the

help of a variational Bayesian approximation and the introduction of “probabilistic back-

fitting” for linear regression, we develop a computationally efficient Bayesian treatment

of linear regression with automatic relevance detection (ARD) (Neal 1994).
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We demonstrate that the algorithm, called Variational Bayesian least squares (VBLS),

can significantly improve the computational efficiency of sparse Bayesian learning, while

performing feature detection and automatic relevance determination. Additionally, VBLS

avoids any potentially expensive cross-validation or tuning of meta parameters by the

user, offering a statistically robust, automatic method that can be applied across data

sets from various systems.

VBLS can be interpreted as a Bayesian version of backfitting that does not require

any sampling, making it suitable for implementation in incremental form for real-time

applications (e.g., as in application domains such as robotics, brain-machine interfaces,

tracking systems etc.). The algorithm’s iterative nature is invaluable in real-time sit-

uations where decisions need to be made quickly such that an approximate solution is

acceptable. In these scenarios, waiting a longer time for a very accurate solution may

not be an acceptable alternative. The algorithm is most advantageous when embedded in

other non iterative methods—such as the Relevance Vector Machine of Tipping (2001)—

since it is able to offer significant relative computational improvement. In this way, we can

apply the algorithm to high-dimensional problems in both linear and nonlinear scenarios.

We also present an incremental, real-time version of the algorithm, demonstrating its

suitability for real-time interfaces between brains and machines. In addition to evalu-

ations on several synthetic data sets and benchmark data sets, we apply the algorithm

to the reconstruction of electromyographic (EMG) data from motor cortical firing, for

the purpose of identifying if M1 and PM cortical neurons can directly predict EMG

traces (Todorov 2000).
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2.1 Computationally Tractable Linear Regression

Before developing our algorithm, it is useful to briefly revisit classical linear regression

techniques. Assuming there are N observed data samples in the data set D = {xi, yi}
N
i=1

(where xi ∈ <d×1 are inputs and yi are scalar outputs), the standard model for linear

regression is:

yi =
d∑

m=1

bmxim + ε (2.1)

where b is the regression vector made up of bm components, d is the number of input

dimensions, and ε is additive mean-zero noise. Given D, the goal is to estimate the

optimal linear coefficients b = [b1 b2 · · · bd]
T which combine the input dimensions to

produce the output y.

It is easy to see that under our current noise model, the optimal estimate of the

regression parameters (in a least-squares or maximum-likelihood sense) is given by:

bOLS =
(
XTX

)−1
XTy (2.2)

where X denotes a matrix whose rows contain the vector xi and y is a column vector

containing the corresponding yi. Eq. (2.2) is also known as the ordinary least squares

(OLS) solution. The main problem with OLS regression in high-dimensional input spaces

is that the full rank assumption of
(
XTX

)−1
is often violated due to underconstrained

data sets.
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Ridge regression (Hoerl & Kennard 1970) can “fix” such problems numerically by

stabilizing the matrix inversion with a diagonal term
(
XTX + αI

)−1
, but usually intro-

duces uncontrolled bias. Additionally, if the input dimensionality exceeds around 1000

dimensions, the matrix inversion can become prohibitively computationally expensive.

Several ideas exist how to improve over OLS. First, stepwise regression (Draper &

Smith 1981) can be employed. However, it has been strongly criticized for its po-

tential for overfitting and its inconsistency in the presence of collinearity in the input

data (Derksen & Keselman 1992). To deal with such collinearity directly, dimensionality

reduction techniques like Principal Components Regression (PCR) and Factor Regression

(FR) (Massey 1965) are useful. These methods retain components in input space with

large variance, regardless of whether these components influence the prediction (Schaal,

Vijayakumar & Atkeson 1998), and can even eliminate low variance inputs that may have

high predictive power for the outputs (Frank & Friedman 1993).

Another class of linear regression methods are projection regression techniques, most

notably PLS regression (Wold 1975). PLS regression performs computationally inex-

pensive O(d) univariate regressions along projection directions, chosen according to the

correlation between inputs and outputs. While slightly heuristic in nature, PLS regres-

sion is a surprisingly successful algorithm for high-dimensional, ill-conditioned regression

problems, although it also has a tendency to overfit (Schaal et al. 1998).

There are also more efficient methods for matrix inversion, e.g., (Hastie & Tibshirani

1990, Strassen 1969), but these methods assume a well-condition regression problem a

priori and degrade in the presence of collinearities in inputs. Other sparse matrix fac-

torization and conjugate gradient techniques, e.g., (Golub & Van Loan 1989, Chow &
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Saad 1998, Smola & Scholkoph 2000), are preconditioners, attempting to transform ma-

trices by factoring them into more computationally convenient and analytically simpler

forms before inverting them.

Finally, there is a class of sparsity inducing methods such as LASSO (Least Absolute

Shrinkage and Selection Operator) regression (Tibshirani 1996) that—along with other

L1-regularized regression methods—attempt to shrink certain regression coefficients in

the solution to zero by using a L1 penalty norm, instead of a L2 penalty norm used

by ridge regression. These methods are suitable for high-dimensional data sets, at the

expense of requiring an open parameter (i.e., a fixed bound on the penalty norm). In

these methods, the regularization parameter needs to be optimized, using cross-validation,

convex optimization or other efficient search techniques.

In the next section, we describe a variational Bayesian linear regression algorithm

(VBLS) that automatically regularizes against problems of overfitting. The iterative

nature of the algorithm—due to its formulation as an EM problem—avoids the computa-

tional cost and numerical problems of matrix inversions that are faced in high-dimensional

OLS regression (e.g., previously proposed sparse variational linear regression methods

of Tipping (2001) and in Bishop (2006)). VBLS can be embedded into other iterative

methods in order to realize computationally efficient updates, as we shall demonstrate in

proceeding chapters.

Note, however, that if accurate results are needed (and computational resources are

unlimited) for data sets with fully relevant input dimensions, VBLS is not as efficient as

the matrix inversion in OLS. The advantage of VBLS arises when dealing with high di-

mensional input spaces, serving as an efficient and robust “automatic” regression method.
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Figure 2.1: Graphical model for linear regression. Random variables are in circular nodes,
observed random variables are in shaded double circles, and point estimated parameters
are in square nodes.

Conceptually, the algorithm can be interpreted as a Bayesian version of either backfitting

or PLS regression.

2.2 Variational Bayesian Least Squares

2.2.1 EM-based Linear Regression

Figures 2.1 to 2.3 illustrate the progression of graphical models needed to develop a

robust Bayesian version of linear regression (D’Souza, Vijayakumar & Schaal 2004, Ting,

D’Souza, Yamamoto, Yoshioka, Hoffman, Kakei, Sergio, Kalaska, Kawato, Strick & Schaal

2005).

Figure 2.1 depicts the standard linear regression model. Part of the inspiration for our

algorithm comes from PLS regression, motivated by the question of how to find maximally

predictive projections in input space, which is also part of various other “subset” selection

techniques in regression (Wessberg & Nicolelis 2004). If we knew the optimal projection
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Figure 2.2: Graphical model for probabilistic backfitting. Random variables are in circu-
lar nodes, observed random variables are in shaded double circles, and point estimated
parameters are in square nodes.

direction of the input data, the entire regression problem could be solved by a univariate

regression between the projected data and the outputs: this optimal projection direction

is simply the true gradient between inputs and outputs. Since we do not know this

projection direction, we now encode its coefficients as hidden variables, in the tradition

of EM algorithms (Dempster et al. 1977). Figure 2.2 shows the corresponding graphical

model.

The unobserved variables zim (where i = 1, . . . , N denotes the index into the data set

of N data points) are the result of the input variables being projected on the respective

projection direction component (i.e., bm). Then, the zim’s are summed up to form a
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predicted output yi. More formally, we can modify the linear regression model in Eq. (2.1)

to become:

yi =
d∑

m=1

zim + εy (2.3)

zim = bmxim + εzm (2.4)

For a probabilistic treatment with EM, we make a standard normal assumption of all

distributions in form of:

yi|zi ∼ Normal
(
yi;1

T zi, ψy
)

zim|xim ∼ Normal (zim; bmxim, ψzm)

(2.5)

where 1 = [1, 1, . . . , 1]T . While this model is still identical to OLS, notice that in the

graphical model of Figure 2.2, the regression coefficients bm are behind the fan-in to the

outputs yi. We call this model Probabilistic Backfitting since we can view the resulting

derived update equation for the regression coefficient bm as a probabilistic version of

backfitting.

With the introduction of unobserved, random variables zim, we are essentially in a

situation where we wish to optimize the parameters φ =
{

{bm, ψzm}
d
m=1 , ψy

}

, given that

we have observed variables D = {xi, yi}
N
i=1. This situation fits very naturally into the

framework of maximum-likelihood estimation via the EM algorithm.
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The EM algorithm maximizes the incomplete log likelihood log p(y|X) by maximizing

the expected complete log likelihood 〈log p(y,Z|X;φ)〉1, where:

log p(y,Z|X;φ) = log

[
N∏

i=1

p(yi|zi)(zi|xi)

]

=
N∑

i=1

log p(yi|zi) +
N∑

i=1

log p(zi|xi)

= −
N

2
logψy −

1

2ψy

N∑

i=1

(
yi − 1T zi

)2

−
N

2

d∑

m=1

logψzm −
d∑

m=1

1

2ψzm

N∑

i=1

(zim − bmxim)2 + consty,Z (2.6)

where zi ∈ <d×1 consists of zim elements and Z ∈ <N×d consists of the vectors zi in its

rows. The resulting EM updates require standard manipulations of normal distributions—

please refer to appendix B.4 of (D’Souza 2004) for the derivations—and are shown below:

E-step :

1TΣz1 =

(
d∑

m=1

ψzm

)[

1 −
1

s

(
d∑

m=1

ψzm

)]

(2.7)

σ2
zm = ψzm

(

1 −
1

s
ψzm

)

(2.8)

〈zim〉 = bmxim +
1

s
ψxm

(
yi − bTxi

)
(2.9)

M-step :

bm =

∑N
i=1 〈zim〉xim
∑N

i=1 x
2
im

(2.10)

ψy =
1

N

N∑

i=1

(
yi − 1T 〈zi〉

)2
+ 1TΣz1 (2.11)

ψzm =
1

N

N∑

i=1

(〈zim〉 − bmxim)2 + σ2
zm (2.12)

1where 〈·〉 denotes the expectation operator
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where we define s = ψy +
∑d

m=1 ψxm and Σz = Cov(z|y,X) is the covariance matrix

of z. This EM version of least squares regression is guaranteed to converge to the same

solution as OLS (D’Souza et al. 2004).

One EM update has a computationally complexity of O(Nd) per EM iteration, where

d is the number of input dimensions, instead of the O(d3) associated with OLS regression

or even O(d2), if more efficient and robust matrix inversion methods are used. This

efficiency comes at the cost of an iterative solution, instead of a one-shot solution for

b as in OLS. Should the number of EM iterations be significant, it is true that the

run-time of the EM algorithm could be as long as non-iterative approaches. However,

as previously mentioned, the true benefit of our iterative approach arises when dealing

real-time applications (where decisions need to be made quickly in a short amount of

time such that an approximate solution is acceptable) and also when embedded in other

iterative methods in order to realize more computationally efficient update equations.

The new EM algorithm appears to only replace the matrix inversion in OLS by an

iterative method, as others have done with alternative algorithms (Strassen 1969, Hastie

& Tibshirani 1990). However, the convergence guarantee of EM is an improvement over

previous approaches. The true power of this probabilistic formulation becomes apparent

when we add a Bayesian layer to achieve robustness in face of ill-conditioned data.

2.2.2 Automatic Relevance Determination

From a Bayesian point of view, the parameters bm should be treated probabilistically

as well, such that we can integrate them out to safeguard against overfitting. For this
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Figure 2.3: Graphical model for variational Bayesian least squares. Random variables
are in circular nodes, observed random variables are in shaded double circles, and point
estimated parameters are in square nodes.

purpose, as shown in Figure 2.3, we introduce precision variables αm over each regression

parameter bm, as previously done in (Tipping 2001):

b|α ∼
d∏

m=1

Normal (bm; 0, 1/αm)

α ∼
d∏

m=1

Gamma (αm; aαm,0, bαm,0)

(2.13)

where α ∈ <d×1 consists of αm components and {aαm,0, bαm,0} are the initial hyperpa-

rameter values for αm.

We now have a mechanism that infers the significance of each dimension’s contribution

to the observed output y. The key quantity that determines the relevance of a regression

input is the parameter αm. A priori, we assume that every bm has a mean zero distribution

with broad variance 1/αm. If the posterior value of αm turns out to be very large after

all model parameters are estimated (equivalent to a very small variance of bm), then

the corresponding distribution of bm must be sharply peaked at zero. Such a posterior
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gives strong evidence that bm is very close to 0 and that the regression input xm has no

contribution to the output. Thus, this Bayesian model automatically detects irrelevant

input dimensions and regularizes against ill-conditioned data sets.

Even though Eq. (2.13) looks very similar to that of Tipping (2001) and the later work

of Bishop (2006), our model has the key property that it is computationally efficient, re-

quiring O(Nd) per EM iteration. In contrast, the methods of Bishop (2006) and Tipping

(2001) take O(d3) and O(N3), per iteration, respectively, becoming prohibitively expen-

sive for large data sets with a very large input dimensionality, d. It is the efficient nature

of our proposed algorithm, Variational Bayesian Least Squares, that makes it suitable

for real-time analysis of very large amounts of very high-dimensional data, as required

in brain-machine interfaces. We discuss this application in more detail in the Evaluation

section.

The final model for VBLS has the following distributions:

yi|zi ∼ Normal
(
1T zi, ψy

)

zim|bm, αm, xim ∼ Normal

(

bmxim,
ψzm
αm

)

bm|αm ∼ Normal

(

0,
1

αm

)

αm ∼ Gamma(aαm,0, bαm,0)

(2.14)

As a note, it should be observed that the Gaussian prior used above for bm is a standard

prior in Bayesian linear regression, e.g., (Bishop 2006). However, the Laplace prior could

be used as well, and the result, when used with MAP estimation, will be similar to LASSO.

We choose to not pursue this direction, but note that the Laplace density can be re-written
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in a hierarchical manner as done above by modeling the variance of bm as a Gamma

distribution with one hyperparameter, i.e., an exponential, as done by (Figueiredo 2003).

Integrating out the hyperparameter gives the Laplace marginal prior.

The dependency of zim on the precision αm may seem unnecessary, but Gelman,

Carlin, Stern & Rubin (2000) provide a justification: it is reasonable to assume that the

variance in zim scales with the variance in bm since increasing our uncertainty in the

prior of bm should imply a corresponding increase in the uncertainty of zim as well. In

this case, we will obtain a joint posterior distribution Q(b, α), which is then marginalized

to get the individual distributions Q(b) and Q(α). With this formulation, the marginal

distribution over b is now a product of Student-t distributions instead of the Gaussian

distributions.

As the graphical model in Figure 2.3 shows, the set of unobserved variables in the

model is now
{

b,α, {zi}
N
i=1

}

. An EM-like algorithm (Ghahramani & Beal 2000) can

be used to find the posterior updates of all distributions, where we maximize the in-

complete log likelihood log p(y|X) by maximizing the expected complete log likelihood

〈log p(y,Z,b,α|X;φ)〉:

log p(y,Z,b,α|X;φ)

= log p(y,Z,b,α|X;Ψz, ψy, aα, bα)

= log

[
N∏

i=1

p(yi|zi)p(zi|b,α,xi)p(b|α)p(α)

]

=
N∑

i=1

log p(yi|zi) +
N∑

i=1

d∑

m=1

log p(zim|bm, αm, xim) +
d∑

m=1

log p(bm|αm) +
d∑

m=1

log p(αm)
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= −
N

2
logψy −

1

2ψy

N∑

i=1

(
yi − 1T zi

)2

−
N

2

d∑

m=1

log
ψzm
αm

−
d∑

m=1

αm
2ψzm

(zim − bmxim)2

+
1

2

d∑

m=1

logαm −
1

2

d∑

m=1

αmb
2
m

+

d∑

m=1

(aαm,0 − 1) logαm −

d∑

m=1

bαm,0αm + consty,Z,b,α (2.15)

where aαm,0 and bαm,0 are the initial parameter values that are set to reflect our confidence

in the prior distribution of bm. In order to obtain a tractable posterior distribution over

all hidden variables b, zi and α, we use a factorial variational approximation of the true

posterior (Ghahramani & Beal 2000): Q(α,b,Z) = Q(α,b)Q(Z).

Note that the connection from the αm to the corresponding zim in Figure 2.3 is an

intentional design. As previously mentioned, under this graphical model, the marginal

distribution of bm becomes a Student t-distribution, allowing for traditional hypothesis

testing (Gelman et al. 2000). The minimal factorization of the posterior into Q(α,b)Q(Z)

would not be possible without this special design.

The variational Bayesian approximation used here allows us to reach a tractable poste-

rior distribution over all hidden variables, such that we can proceed to infer the posterior

distributions. Variational Bayesian learning approximates the intractable joint distri-

bution over hidden states and parameters with a simpler distribution, e.g., assuming

independence between hidden states and parameters such that the posterior distribu-

tions are factorized. An exact Bayesian solution is not feasible since one would need
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to compute the marginals of the joint posterior distribution—and this is not analyti-

cally possible. For discussions on the quality of variational Bayesian approximations and

how they compare to the true solution, please refer to (Jordan et al. 1999, Jaakkola &

Jordan 2000, Attias 2000, Ghahramani & Beal 2000). We will return to this point in the

Discussion section.

After some algebraic manipulations (details on the derivations can be found in Ap-

pendix A.1), the final EM posterior update equations become:

E-step:

Σz =

(
1

ψy
11T + Ψ−1

z 〈A〉

)−1

= Ψz 〈A〉−1 −
Ψz 〈A〉−1

11TΨz 〈A〉−1

ψy + 1TΨz 〈A〉−1
1

(2.16)

〈zi〉 = Σz

(
1

ψy
1yi + Ψ−1

z 〈A〉 〈B|A〉xi

)

=

(

Ψz 〈A〉−1
1

ψy + 1TΨz 〈A〉−1
1

)

yi +

(

〈B|A〉 −
Ψz 〈A〉−1

11T 〈B|A〉

ψy + 1TΨz 〈A〉−1
1

)

xi (2.17)

σ2
bm|αm

=
ψzm
〈αm〉

(
N∑

i=1

x2
im + ψzm

)−1

(2.18)

〈bm|αm〉 =

(
N∑

i=1

x2
im + ψzm

)−1( N∑

i=1

〈zim〉xim

)

(2.19)

âαm = aαm,0 +
N

2
(2.20)

b̂αm = bαm,0 +
1

2ψzm







N∑

i=1

〈
z2
im

〉
−

(
N∑

i=1

x2
im + ψzm

)−1( N∑

i=1

〈zim〉xim

)2





(2.21)

〈αm〉 =
âαm

b̂αm
(2.22)

M-step:

ψy =
1

N

N∑

i=1

(
yi − 1T 〈zi〉

)2
+ 1TΣz1 (2.23)
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ψzm =
1

N

N∑

i=1

〈αm〉 (〈zim〉 − 〈bm|αm〉xim)2 + 〈αm〉σ
2
zm

+ 〈αm〉σ
2
bm|αm

(

1

N

N∑

i=1

x2
im

)

(2.24)

where 〈A〉, 〈B|A〉, Ψz are diagonal matrices of 〈α〉, 〈b|α〉, ψz, respectively. Σz is a

diagonal covariance matrix with a diagonal vector of σ2
z . Note that:

〈
z2
im

〉
= 〈zim〉

2 + σ2
zm

where σ2
zm

is the mth term of the vector σ2
z .

Initialization of Priors: The hyperparameters of αm are learnt using EM, as shown

by Eqs. (2.20) and (2.21). We set the initial values of the hyperparameters, aα,0 and

bα,0, in an uninformative way and use values of aαm,0 = 10−8 and bαm,0 = 10−8 for all

m = 1, . . . , d. This means that initial value of αm is 1, with high uncertainty, i.e., αm has

a rather flat prior distribution. These initial hyperparameter values for αm need never

be changed, regardless of the data set or system. In this way, the algorithm retains a

“black-box” like quality.

Notice that the update equation for 〈bm|αm〉 can be rewritten recursively so that the

posterior mean of bm in the (n+ 1)th EM iteration is:

〈bm|αm〉
(n+1) =

( ∑N
i=1 x

2
im

∑N
i=1 x

2
im + ψzm

)

〈bm|αm〉
(n) +

ψzm
sαm

∑N
i=1

(

yi − 〈b|α〉(n)T
xi

)

xim
∑N

i=1 x
2
im + ψzm

(2.25)
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where s = ψy + 1TΨz 〈A〉−1
1. Examining Eq. (2.25), we see that the first time is a

decaying term. In the absence of a correlation between the current input dimension and

the residual error (i.e., if the second term is zero), then after some number of EM iter-

ations, the mean of the current regression coefficient 〈bm|αm〉 will approach zero. The

resulting regression solution regularizes over the number of retained inputs in the final re-

gression vector, performing a functionality similar to Automatic Relevance Determination

(ARD) (Neal 1994).

The update equations of VBLS, Eqs. (2.16) to (2.24), have an algorithmic complexity

of O(Nd) per EM iteration. However, the number of EM iterations required before

convergence is an open issue and could be many. Hence, VBLS is most advantageous in

incremental, real-time scenarios where, due to hard time constraints, an approximately

accurate solution is satisfactory in lieu of an accurate solution that takes unacceptably

long to compute. One can further show that the marginal distribution of all bm is a

t-distribution with t = 〈bm|αm〉 /σbm|αm
and 2âα degrees of freedom, which allows a

principled way of determining whether a regression coefficient was excluded by means of

standard hypothesis testing.

The pseudocode for VBLS can be found in Appendix A.2.

2.3 Real-time Implementation

Due to its computationally efficient nature, the VBLS algorithm presented in Algorithm 1

lends itself to scenarios where fast, online learning with large amounts of high-dimensional

data is required, such as real-time brain-machine interfaces. Previous work by Sato &
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Ishii (2000) and Sato (2001) has shown that an online version of the Variational Bayes

framework can be derived, such that online model selection can be done with guaranteed

convergence. A scalar discount factor or forgetting rate is typically introduced in order

to forget estimates that were calculated earlier (and hence, were less accurate). (Sato &

Ishii 2000, Sato 2001) introduce a time-dependent schedule for the discount factor and

prove convergence of the online EM-based algorithm. Since the main focus of this chapter

is on the batch form of the algorithm, we will show only a proof-of-concept and use a

constant-valued discount factor (with a heuristically-set value) in order to demonstrate

that the batch VBLS algorithm can be translated into incremental form. We leave the

detailed theoretical development of the online version of the algorithm with a discount

factor schedule for future work.

In particular, we introduce a forgetting rate, 0 ≤ λ ≤ 1, to exponentially discount

data collected in the past, as done in (Ljung & Soderstrom 1983). The forgetting rate

enters the algorithm by accumulating sufficient statistics of the batch algorithm in an

incremental way. Setting λ = 0 ensures that all past samples are forgotten, while setting

λ = 1 ensures that none of observed samples are forgotten. We can then extract the

sufficient statistics by examining the batch EM equations, Eqs. (2.16) to (2.24). The

incremental EM update equations are listed in Appendix A.3.

2.4 Evaluation

We turn to the application and evaluation of VBLS in the context of predicting EMG

data from neural data recorded in the primary motor (M1) and premotor (PM) cortices of
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monkeys (Ting et al. 2005, Ting, D’Souza, Yamamoto, Yoshioka, Hoffman, Kakei, Sergio,

Kalaska, Kawato, Strick & Schaal 2008). The key questions addressed in this application

were i) whether EMG data can be reconstructed accurately with good generalization, ii)

how many neurons contribute to the reconstruction of each muscle, and iii) how well the

VBLS algorithm compares to other analysis techniques. The underlying assumption of

this analysis was that the relationship between cortical neural firing and muscle activity

is approximately linear.

Before applying VBLS to real data, however, we first run it on synthetic data sets

where “ground truth” is known in order to better evaluate its performance in a controlled

setting.

2.4.1 Synthetic Data

2.4.1.1 Data sets

We generated random input training data consisting of 100 dimensions, 10 of which were

relevant dimensions. The other 90 were either irrelevant or redundant dimensions, as

we explain below. Each of the first 10 input dimensions was drawn from a Gaussian

distribution with some random covariance. The output data was then generated from

the relevant input data using the vector b ∈ <10×1, where each coefficient of b, bm,

was drawn from a Normal(0, 100) distribution, subject to the fact that it cannot be zero

(since this would indicate an irrelevant dimension). Additive mean-zero Gaussian noise

of varying levels was added to the outputs.
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Noise in the outputs was parameterized with the coefficient of determination, r2, of

standard linear regression, defined as:

r2 =

(
σ2
y − σ2

res

)

σ2
y

where σ2
y is the variance of the outputs and σ2

res is the variance of the residual error.

We added noise scaled to the variance of the noiseless outputs ȳ such that σ2
noise = cσ2

ȳ ,

where c = 1
r2

− 1. Results are quantified as normalized mean squared errors (nMSE),

that is, the mean squared error on the test set normalized by the variance of the outputs

of the test set. Note that the best normalized mean squared training error that can be

achieved by the learning system under this noise level is 1− r2, unless the system overfits

the data. We used a value of r2 = 0.8 for high output noise and a value of r2 = 0.9 for

lower output noise.

A varying number of redundant data vectors was added to the input data, generated

from random convex combinations of the 10 relevant vectors. Finally, we added irrelevant

data columns, drawn from a Normal(0,1) distribution, until a total of 100 input dimen-

sions was reached, generating training input data that contained irrelevant and redundant

dimensions.

We created the test data set in a similar manner, except that the input data and

output data were left noise-free. For our experiments, we considered a synthetic training

data set with N = 1000 data samples and a synthetic test data set with 20 data samples.

We examined the following four different combinations of redundant, v, and irrelevant, u,
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input dimensions in order to better analyze the performance of the algorithms on different

data sets:

i) v = 0, u = 90 (all the 90 input dimensions are irrelevant)

ii) v = 30, u = 60

iii) v = 60, u = 30

iv) v = 90, u = 0 (all the 90 input dimensions are redundant)

2.4.1.2 Methods

We compared VBLS to four other methods that were previously described in Section 2.1:

i) ridge regression, ii) stepwise regression, iii) PLS regression and iv) LASSO regression.

For ridge regression, we introduced a small ridge parameter value of 10−10 to avoid ill-

conditioned matrix inversions. We used Matlab’s “stepwisefit” function to run stepwise

regression. The number of PLS projections for each data set fit was found by leave-one-

out cross-validation. Finally, we chose the optimal tuning parameter in LASSO regression

using k-fold cross-validation.

2.4.1.3 Results

For evaluation, we calculated the prediction error on noiseless test data, using the learnt

regression coefficients from each technique. Results are quantified as normalized mean

squared errors (nMSE). Figure 2.4 shows the average prediction error for noiseless test

data, given training data where the output noise is either high (r2 = 0.8) or low(er)

(r2 = 0.9).
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(a) Average prediction error for training data where output noise
has r2 = 0.9.
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(b) Average prediction error for training data where output noise has
r2 = 0.8.

Figure 2.4: Average normalized mean squared prediction error for synthetic 100 input-
dimensional data with a varying level of output noise in the training data, averaged over
10 trials. The number of redundant dimensions is denoted by v, and the number of
irrelevant dimensions is u.
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All the algorithms were executed on 10 randomly generated sets of data. The pre-

dictive nMSE results reported in Figure 2.4 were averaged over the 10 trials. Note that

the best training nMSE values possible under the two noise conditions are 0.1 for the

low noise case and 0.2 for the high noise case. The training nMSE values were omitted

for both graphs since all algorithms attained training errors that were around the lowest

possible values.

From Figures 2.4(a) and 2.4(b), we see that regardless of output noise level, VBLS

achieves either the lowest predictive nMSE value or a predictive nMSE value compa-

rable with that of the other four algorithms. In general, as the number of redundant

input dimensions increases and the number of irrelevant input dimensions decreases, the

prediction error improves (i.e., it decreases). This may be attributed to the fact that

redundancy in the input data provides more “information”, making the problem easier

to solve.

The performance of stepwise regression degrades as the number of redundant dimen-

sions increases, as shown in Figures 2.4(a) and 2.4(a), due to its inability to cope with

collinear data. LASSO regression appears to perform quite well, compared with PLS

regression and ridge regression. This is unsurprising, given it is known for its ability to

produce sparse solutions.

In summary, we can confirm that VBLS performs very well—as well as or better than

classical robust regression methods (such as LASSO) on synthetic tests. Interestingly,

PLS regression and ridge regression are significantly inferior in problems that have a

large number of irrelevant dimensions. Stepwise regression has deteriorated performance

as soon as co-linear inputs are introduced.
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2.4.1.4 Non-Normal Synthetic Data

v=0, u=90 v = 30, u = 60 v = 60, u = 30 v = 90, u = 0
0
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All 90 dimensions
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All 90 dimensions
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Figure 2.5: Average normalized mean squared prediction error for synthetic non-Normal
100 input-dimensional data, with an output noise of r2 = 0.9999 in the training data,
averaged over 10 trials. The number of redundant dimensions is denoted by v, and the
number of irrelevant dimensions is u.

We can also examine synthetic data sets which do not correspond to the generative

model (i.e., data and noise that are not generated from Normal distributions) in order to

evaluate how dependent our model is on the Normal prior distributions that we assumed.

Synthetic data is generated in a similar fashion as in Section 2.4.1.1, with 100 dimensions—

10 of which are relevant dimensions. The other 90 dimensions are chosen to be either

irrelevant or redundant. However, there are two differences between this synthetic data

and that of Section 2.4.1.1.

Firstly, the first 10 relevant input dimensions were generated from a multi-modal

distribution, instead of a Normal distribution. Specifically, each of the relevant 10 input
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dimensions was drawn from a sum/mixture of 10 Gaussian distributions, with each Gaus-

sian distribution having a different mean and variance, i.e., xm ∼
∑N

p=1 Normal(µp, σ
2
p),

for m = 1, ..., 10 where σp is drawn randomly from a uniform distribution between 0 and

2 and µp is drawn similarly from a uniform distribution between 0 and 2. The second dif-

ference between the non-Normal synthetic data set and the data of Section 2.4.1.1 is the

additive output noise. Instead of Gaussian distributed noise, noise drawn from a Student

t-distribution was added to the outputs. We chose a noise level of r2 = 0.9999 for the

output noise, such that the noise was scaled to the variance of the noiseless outputs ȳ.

Redundant and irrelevant data vectors were added to the input data in a similar way

as described in Section 2.4.1.1. The test data was created in a similar manner, except the

input and output data were left noise-free. As in Section 2.4.1.1, we considered synthetic

training data with N = 1000 data samples and a synthetic test data set with 20 data

samples.

Figure 2.5 shows the prediction nMSE values, averaged over 10 trials. We can observe

that both VBLS and LASSO outperform the other classical regression methods on non-

Normal synthetic data sets. This figure demonstrates that even for data sets that do not

follow the Normal prior distributions assumed in our generative model, VBLS continues

to perform quite competitively.
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2.4.2 EMG Prediction from Neural Firing

2.4.2.1 Data sets

We investigated data from two different neurophysiological experiments. In the first

experiment by Sergio & Kalaska (1998), a monkey moved a manipulandum in a center-

out task in eight different directions, equally spaced in a horizontal planar circle of 8cm

radius. A variation of this experiment held the manipulandum rigidly in place, while the

monkey applied isometric forces in the same eight directions. In both conditions (whether

the monkey was applying a movement or an isometric force), feedback was given through

visual display on a monitor. Neural activity for 71 M1 neurons was recorded in all

conditions, along with the EMG outputs of 11 muscles2.

After preprocessing, we obtained a total of 2320 data samples for each neuron/muscle

pair, collected over all eight directions and for both movement and isometric force con-

ditions. Each data sample consisted of the average firing rates from a particular neuron

(averaged over a window of 10msec) and the corresponding EMG activation3 from a par-

ticular muscle. A sampling interval of 10msec was used. For each sample in this data

set, a delay of 50msec between M1 cortical neural firing and EMG muscle activation was

empirically chosen, based on estimates from measurements.

The second experiment, conducted by Kakei, Hoffman & Strick (1999, 2001), involved

a monkey trained to perform eight different combinations of wrist flexion-extension and

2The 11 arm muscles analyzed included the 1) surpraspinatus, 2) infraspinatus, 3) subscapularis, 4)
rostral trapezius, 5) caudal trapezius, 6) posterior deltoid, 7) medial deltoid, 8) anterior deltoid, 9) triceps
medial head, 10) brachialis and 11) pectoralis muscles.

3EMG was recorded from pairs of shoulder and elbow muscles, implanted percutaneously with Teflon-
coated single-stranded stainless steel wires. EMG activity was amplified, rectified and integrated (over
10msec bins) to generate summed histograms of activity. The EMG data had no physically meaningful
units.
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radial-ulnar movements while in three different arm postures (pronated, supinated and

midway between the two). These experiments resulted in two data sets. For the first data

set (Kakei et al. 1999), the EMG outputs of 7 contributing muscles4 were recorded, along

with the neural data of 92 M1 neurons at all three wrist postures, resulting in 2616 data

samples for each neuron/muscle pair. Similar to the Sergio & Kalaska (1998) data set,

each data sample consisted of the average firing rates from a particular neuron (averaged

over a window of 10msec) and the corresponding EMG activation from a particular muscle.

A sampling interval of 10msec was used. For each sample in the Kakei et al. (1999) data

set, a delay of 20msec5 between M1 cortical neural firing and EMG muscle activation was

chosen empirically, based on estimates from measurements. The second data set (Kakei

et al. 2001) also included EMG outputs of the same 7 muscles, but this time contained the

recorded spiking data of 72 PM neurons at the three wrist postures. After preprocessing,

the second Kakei et al. (2001) data set had 2592 data samples for each neuron/muscle

pair. For each sample, a delay of 30msec6 between PM cortical neural firing and EMG

muscle activation was assumed.

4EMG was recorded using pairs of single-stranded stainless steel wires placed transcutaneously into
each muscle. The 7 arm muscles considered were the 1) extensor carpi ulnaris (ECU), 2) extensor digito-
rum 2 and 3 (ED23), 3) extensor digitorum communis (EDC), 4) extensor carpi radialis brevis (ECRB),
5) extensor carpi radialis longus (ECRL), 6) abductor pollicis longus (APL), and 7) flexor carpi radialis
(FCR) muscles.

5The results of our analyses are insensitive to a delay in the range of 20− 60msec since there was only
a very small numerical difference between the quality of the fit of the data in this interval. Delays of
50msec or higher are physiologically more plausible.

6Within a delay range of 30 − 80msec, there is no real difference in the quality of fit of our analyses.
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2.4.2.2 Methods

As a baseline comparison, EMG reconstruction was obtained through a combinatorial

search over possible regression models. This approach served as our baseline study (re-

ferred to as ModelSearch in the figures). A particular model is characterized by a subset

of neurons that is used to predict the EMG data. For the Sergio & Kalaska (1998) data,

given 71 neurons, the number of possible models that exist for a particular muscle is:

71∑

m=1







71

m







Since the order of the contributing neurons is not important, the above expression lists the

combinations instead of permutations of neurons. This value is too large for an exhaustive

search. Therefore, we considered only possible combinations of up to 20 neurons, which

required several weeks of computation on a 30-node cluster computer. The optimal

predictive subset of neurons was determined from a series of 8-fold cross-validation sets.

For both data sets, the cross-validation procedure used in the baseline study was used

in order to determine the optimal subset of neurons. Cross-validation was done in the

context of the behavioral experiments and not in a statistically randomized way. For

the Sergio & Kalaska (1998) experiment, the data was separated into different force cate-

gories (isometric force versus force generated during movement) and movement directions

in space. Thus, cross-validation asked the meaningful question of whether isometric and

movement conditions are predictive of each other and whether there is spatial general-

ization. Similarly, for the Kakei et al. experiments, data was separated into directional
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movements at the wrist (supinated, pronated and midway between the two wrist move-

ments) and directional movements in space, which again allowed cross-validation to make

meaningful statements about generalization over postures and space.

Figure B.1 in Appendix B.1 shows how these 8 cross-validation sets are constructed

from the Sergio & Kalaska (1998) data. This baseline study (i.e., ModelSearch) served as

a comparison for ridge regression, stepwise regression, PLS regression, LASSO regression

and VBLS. These five algorithms used the same validation sets employed in the baseline

study. Again, as described in Section 2.4.1.2, ridge regression was implemented using a

small ridge regression parameter of 10−10, in order to avoid ill-conditioned matrices. We

used Matlab’s “stepwisefit” to run stepwise regression, and the number of PLS projections

for each data fit was found by leave-one-out cross-validation. The average normalized

mean squared error values depicted in Figure 2.6 demonstrate how well each algorithm

performs, averaging the generalization performances over all the cross-validation sets from

Figure B.1.

The average number of relevant neurons7 (i.e., not including irrelevant neurons and

neurons providing redundant information), shown in Figure 2.9, was calculated by aver-

aging over the number of relevant neurons in each of the 8 training sets in Figure B.1.

The final set of relevant neurons, used in Figure B.4 to calculate the percentage

match of relevant neurons relative to those found by the baseline study (ModelSearch),

was reached for each algorithm (except VBLS) by taking the common neurons found to

be relevant over the 8 cross-validation sets. The relevant neurons found by VBLS and

7Relevant neurons are those that contribute to the regression result in a statistically sound way,
according to a t-test with p < 0.05. It should be noted that in noisy data, two neurons that carry the
same signal, but have independent noise will usually both remain significant in our algorithm, as the
combined signal of both neurons helps to average out the noise in the spirit of population coding
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reported in Figure B.4 were obtained by using the entire data set since no cross-validation

procedure is required by VBLS (i.e., dividing the data into separate training and test sets

is not necessary). As with all Bayesian methods, VBLS performs more accurately as the

data size increases, without the danger of overfitting. Inference of relevant neurons in

PLS was based on the subspace spanned by the PLS projections, while relevant neurons

in VBLS were inferred from t-tests on the regression parameters, using a significance of

p < 0.05. Stepwise regression determined the number of relevant neurons from the inputs

that were included in the final model. Note that since ridge regression retained all input

dimensions, this algorithm was omitted in relevant neuron comparisons.

Analogous to the first data set, a combinatorial analysis was performed on the Kakei

et al. (1999) M1 neural and Kakei et al. (2001) PM neural data sets in order to determine

the optimal set of M1 and PM neurons contributing to each muscle (i.e. producing the

lowest possible prediction error) in a series of 6-fold cross-validation sets. Figures B.2

and B.3 in Appendix B.1i show the 6 cross-validation sets used for the M1 and PM

neural data sets. PLS, stepwise regression, ridge regression and VBLS were applied using

the same cross-validation sets, employing the same procedure described for the Sergio &

Kalaska (1998) data set. The average normalized mean squared error values shown in

Figures 2.7 and 2.8 illustrate the generalization performance of each algorithm, averaged

over all the cross-validation sets shown in Figures B.2 and B.38. The average number

of relevant neurons shown in Figures 2.10 and 2.11 was calculated by averaging over the

number of relevant neurons found in each of the 6 training sets from Figures B.2 and B.3.

8Note that the partitioning of the data into training and test cross-validation sets was essentially an
intuitive process that tried to use insights from the different experimental conditions in which the data
was collected.
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Figure 2.6: Normalized mean squared error, averaged over all cross-validation sets and
over all muscles for Sergio & Kalaska (1998) M1 neural data set.

As with the Sergio & Kalaska (1998) data set, the final set of relevant neurons—used

in Figures 2.10 and 2.11—was obtained for each algorithm (except VBLS) by taking the

common neurons found to be relevant over the 6 cross-validation sets.

2.4.2.3 Results

Generalization Performance: Figures 2.6 to 2.8 show that VBLS resulted in a gen-

eralization error comparable to that produced by the baseline study. In the Kakei et al.

(1999) M1 and Kakei et al. (2001) PM neural datasets, all algorithms performed similarly.

However, ridge regression, stepwise regression, PLS regression and LASSO regression per-

formed far worse on the Sergio & Kalaska (1998) M1 neural dataset, with ridge regression

attaining the worst error. Such performance is typical for traditional linear regression

methods on ill-conditioned high-dimensional data, motivating the development of VBLS.
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Figure 2.7: Normalized mean squared error, averaged over all cross-validation sets and
over all muscles for Kakei et al. (1999) M1 neural data.
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Figure 2.8: Normalized mean squared error, averaged over all cross-validation sets and
over all muscles for Kakei et al. (2001) PM neural data.
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Figure 2.9: Average number of relevant M1 neurons found over all cross-validation sets
for Sergio & Kalaska (1998) data set.

Interestingly, in Figure 2.7, we observe that the prediction errors of ridge regression

and of the baseline study (i.e. ridge regression using a selected subset of M1 neurons)

are quite similar for the Kakei et al. (1999) M1 neural data set. This suggests that,

for this particular data set, there is little advantage in performing a time-consuming

manual search for the optimal subset of neurons. A similar observation can be made for

the Kakei et al. (2001) PM neural data set when examining Figure 2.8, although this

effect is less pronounced in the PM neural data set. In contrast, Figure 2.6 shows a sharp

difference between the predictive error values of ridge regression and the baseline study’s

combinatorial-like model search. This may be attributed to the fact that the Sergio &

Kalaska (1998) M1 neural data set is somehow much richer and hence, more challenging

to analyze.
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Figure 2.10: Average number of relevant M1 neurons found over all cross-validation sets
for Kakei et al. (1999) data.
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Figure 2.11: Average number of relevant PM neurons found over all cross-validation sets
for Kakei et al. (2001) data.
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Table 2.1: Percentage neuron matches found by each algorithm, as compared to those
found by the baseline study (ModelSearch), averaged over all muscles of each data set.

STEP PLS LASSO VBLS

Sergio & Kalaska (1998) M1 data 7.2% 7.4% 5.4% 94.2%
Kakei et al. (1999) M1 data 65.1% 42.9% 80.6% 94.4%
Kakei et al. (2001) PM data 22.9% 14.2% 44.5% 91.5%

Average Number of Relevant Neurons: The average number of relevant M1 neu-

rons found by VBLS was slightly higher than the baseline study, as seen in Figures 2.9

to 2.11. This is unsurprising since the baseline studies did not consider all possible com-

bination of neurons. For example, the baseline study for Sergio & Kalaska (1998) data

set considered possible combinations of up to only 20 neurons, instead of the full set of 71

neurons. In particular, notice that in Figures 2.10 and 2.11, small amounts of the total

92 M1 neurons and 72 PM neurons were found to be relevant by the baseline study for

certain muscles (e.g., muscles 1, 6 and 7).

Percentage Relevant Neuron Match: We compared the relevant neurons identi-

fied by each algorithm with those found by the baseline combinatorial-like model search

in an attempt to evaluate how well each algorithm in comparison to the model search

approach. Table 2.1 shows that the relevant neurons identified by VBLS coincided at

a very high percentage with those of the baseline model search results, while stepwise

and PLS regression had inferior outcomes. The table illustrates that VBLS was able to

reproduce comparable results to a combinatorial-like model search approach. However,

the main advantage of VBLS arises in its speed: VBLS took 8 hours for all validation

sets on a standard PC while the model search took weeks on a cluster computer. LASSO
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regression matched a high percentage of the relevant M1 and PM neurons in the Kakei

et al. data sets, but fared far worse on the Sergio & Kalaska (1998) data set. These per-

centage values for the Kakei et al. data sets are perhaps inflated and should be given less

consideration since the numbers of relevant M1 and PM neurons found by the baseline

study are relatively small for certain muscles.

Figures B.4, B.5 and B.6 in Appendix B.2 show the detailed breakdown of percentage

M1 and PM neuron matches for each algorithm on each muscle. The consistent and

good generalization properties of VBLS on all neural data sets, as shown in Figures 2.6,

2.7 and 2.8 suggests that the Bayesian approach of VBLS sufficiently regularizes the

participating neurons such that no overfitting occurs, despite finding a larger number of

relevant neurons.

In general, VBLS achieved comparable performance with the baseline study when

reconstructing EMG data from M1 or PM neurons. Note that VBLS is an iterative

statistical method, which performs slower than classical “one-shot” linear least squares

methods (i.e., on the order of several minutes for the data sets in our analyses). Neverthe-

less, it achieves comparable results with our combinatorial model search, while performing

at much faster speeds.

2.4.3 Real-time Analysis for Brain-Machine Interfaces

Both neural data sets analyzed in Section 2.4.2 are inherently real-time data—collected

online, stored and then analyzed in batch form (i.e., a sampling interval is used, and a

delay between neural firing and EMG activity is empirically chosen in order to extract

the data samples to be used in the batch form of the data). As a result, in the real-time
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simulations, we took the batch form of the data and presented it sequentially, one data

sample at each time step.

We applied the real-time version of VBLS, derived in Section 2.3, on the Sergio &

Kalaska (1998) data set since this was the more interesting of the three presented in

Section 2.4.2. We used a forgetting rate of λ = 0.999, assumed each sample of the data

set arrived sequentially at different time steps, and iterated through the incremental

VBLS equations, Eqs. (A.13) to (A.12), twice for each time step.

Figure B.7(a) shows the coefficient of determination values, r2 (where r2 = 1−nMSE),

for both the batch and real-time versions of VBLS on the entire Sergio & Kalaska (1998)

data set. Figure B.7(b) shows the number of relevant M1 neurons found by batch VBLS

and real-time VBLS for the same data set. For the real-time version of VBLS, the r2

values and relevant neurons reported were from the last time step. We can see from

both figures that the real-time and batch versions of VBLS achieve a similar level of

performance. The average r2 values—averaged over all 11 muscles—confirm this: batch

VBLS had an average r2 value of 0.7998, while real-time VBLS had an average r2 value

of 0.7966.

2.5 Interpretation of Neural Data Analyses

While the main focus of this chapter lies in the introduction of a robust linear regression

technique for high-dimensional data, we would like to discuss how our analysis technique

can be exploited for the interpretation of the neurophysiological data that we used in this
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study. We show plots of EMG activity for a muscle in the Sergio & Kalaska (1998) data

set, but further plots referred to in the text below can be found in Appendix B.4.

Each of the eight EMG plots in Figures 2.12 and 2.13 shows the following three EMG

traces:

i) the raw average EMG trajectories

ii) the predicted EMG activity, as obtained by VBLS using all available data in all

conditions (VBLS-full)

iii) the predicted EMG activity, as obtained by VBLS using only half the data for

fitting9 (VBLS-cv)

This last cross-validated fit tests how well isometric M1 neural recordings can predict

movement EMG and how well movement-related M1 neural recordings can predict iso-

metric EMG. Alternatively, it tests whether the neuron to EMG relationship is the same

between the isometric and the movement conditions.

2.5.1 Sergio & Kalaska (1998) data set

One of the main results reported by Sergio & Kalaska (1998) was that the firing of the

reported M1 neurons had strong correlation with EMG-like (or force-like) signals in both

movement and isometric conditions. In contrast, evidence for correlations with kinematic

data (such as movement direction, velocity, or target direction) was less pronounced.

We generated Figures 2.12 and 2.13, both of which reproduce similar illustrations to

Figures 3A and 3B in Sergio & Kalaska (1998). The two figures show the EMG activity

9For the isometric condition, only movement data was used for fitting. For the movement condition,
only isometric data was used for fitting.
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Figure 2.12: Observed vs. predicted EMG traces under isometric force conditions for the
infraspinatus muscle, given M1 neural firing from Sergio & Kalaska (1998). The center
plot shows the trajectories in eight different directions—in the (x, y) plane—taken by
the hand. This figure is taken from Sergio & Kalaska (1998). Each of the eight plots
surrounding this center plot shows EMG traces over time for each hand trajectory.
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Figure 2.13: Observed vs. predicted EMG traces under movement force conditions for the
infraspinatus muscle, given M1 neural firing from Sergio & Kalaska (1998). The center
plot shows the trajectories in eight different directions—in the (x, y) plane—taken by
the hand. This figure is taken from Sergio & Kalaska (1998). Each of the eight plots
surrounding this center plot shows the EMG traces over time for each hand trajectory.
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of the infraspinatus muscle in all eight isometric force production directions (Figure 2.12)

and movement directions (Figure 2.13). The trajectories, shown in (x, y) coordinates,

taken by the hand are illustrated in the center of each figure. These center figures are

taken from the original figures of Sergio & Kalaska (1998) since we did not have access

to the hand trajectory data.

As Figures 2.12 and 2.13 both show, M1 neural firing predicts the EMG traces very

well in general. The cross-validation tests also demonstrate very good EMG reconstruc-

tion, thus confirming Sergio & Kalaska (1998)’s results that the recorded M1 neurons have

sufficient information to extract signals of the time-varying dynamics and the temporal

envelopes of EMG activities.

2.5.2 Kakei et al. (1999) and Kakei et al. (2001) data sets

The main message in Kakei et al. (1999) and Kakei et al. (2001) was that one can find

neurons in M1 that carry intrinsic (muscle-based) information and neurons that carry

extrinsic–that is, (x, y) task space–information. In contrast, the PM cortex had predom-

inantly extrinsic neurons.

For our analyses, we had access to the average firing rates of the M1 and PM neurons

and the corresponding EMG traces, as well as the (x, y) movement as performed by

the hand. Thus, we used VBLS to predict the EMG activity in all three arm posture

conditions (pronated, supinated and midway between the two) from the neural firing and

to predict the (x, y)-velocity trajectories from neural firing. Note that all this data was

obtained from the same highly trained monkey, such that it was possible to i) re-use

53



EMG data obtained during the M1 experiment as target for the PM data and ii) share

the same (x, y) data across the M1 and PM experiment.

We illustrate our results in a similar form as in Figures 2.12 and 2.13, showing plots

for the extensor carpi radialis brevis (ECRB) muscle and only for the supination posture.

Figure B.8(a) shows the EMG fits for M1 neurons, while Figure B.9(a) shows the same fits

for PM neurons. The center plots illustrate recorded (x, y) movement in the horizontal

plane in this posture. Interestingly, both M1 and PM neurons achieve a very good

EMG reconstruction10.

Figures B.10(a), B.12(a), B.11(a) and B.13(a) demonstrate the (x, y)-velocity fits

for M1 and PM neurons, respectively, in the supination condition11. The quality of fit

appears reduced in comparison to the EMG data, but it is hard to quantify this statement

as EMG and (x, y)-velocities have quite different noise levels such that r2 values cannot

be compared.

In order to judge whether M1 or PM neurons achieve better fits for EMG and (x, y)-

velocity data, we compared the r2 values from all experimental conditions in a pairwise

student’s t-test. No significant difference could be found between either the quality of

EMG fitting or the (x, y)-velocity fits.

Thus, our analysis concludes that both M1 and PM carry sufficient information

to predict EMG activity. It should be noted, however, that in Kakei et al.’s original

10It should be noted that, potentially, the hand movement from Kakei et al. is of significant lower
complexity than the arm movement data of Sergio & Kalaska (1998). The temporal profiles of the EMG
data in Kakei et al. is much simpler, such that it may be easier to predict it. Support for this latter
hypothesis comes from the fact that essentially all statistical methods we tested performed equally well
on the EMG prediction problem. Thus, future work will have to examine whether PM neurons would
also be able to predict more complex EMG traces.

11The optimal delay value between M1 cortical neural firing and the resulting direction of movement
was found to be 80msec since this value lead to the lowest fitting error. In a similar fashion, the optimal
delay between PM cortical neural firing and the resulting direction of movement was found to be 90msec.
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experiment, neurons were classified into extrinsic or intrinsic neurons according to how

much their tuning properties were compatible with intrinsic or extrinsic variables. Their

analysis was a single neuron analysis, while our investigation looked at the predictive

capabilities of the entire population of neurons. Thus, our results are not in contradiction

with Kakei et al., but rather, demonstrate the important difference between the predictive

capabilities of a single neuron vs. that of the population code. The latter is of particular

importance for brain-machine interfaces, and our results provide further evidence for the

information richness of cortical areas that, from the view of single neuron analysis, seemed

to be much more specialized.

We also analyzed the neurons that were found to be relevant for EMG prediction and

(x, y)-velocity prediction, using t-tests performed on the inferred regression coefficients.

In particular, we wondered whether some neurons in PM and M1 would specialize on EMG

prediction, while others would prefer (x, y)-velocity prediction. However, no interesting

specialization could be found. For example, of all 72 PM neurons, we found that 4.17%

were relevant to (x, y)-velocity prediction only, 15.28% were relevant to EMG prediction

only, and 79.17% were relevant to both velocity and EMG prediction (leaving 1.39% of

PM neurons to be irrelevant to both velocity and EMG prediction). Of all 92 M1 neurons,

we found that 4.35% were relevant to (x, y)-velocity prediction only, 26.09% were relevant

to EMG prediction only, and 65.22% were relevant to both velocity and EMG prediction.

Thus, the majority of neurons were involved in both EMG and velocity prediction.

This rich information about different movement variables in both M1 and PM most

likely contributes to the success of various brain-machine interface projects, where the

precise placement of electrode arrays seemingly does not matter too much.
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2.6 Discussion

This chapter addresses the problem of analyzing high-dimensional data with linear regres-

sion techniques, typically encountered in neuroscience and the new field of brain-machine

interfaces. In order to achieve robust statistical results, we introduced a novel Bayesian

technique for linear regression analysis with automatic relevance determination, called

Variational Bayesian Least Squares. In contrast to previously proposed variational lin-

ear regression methods, VBLS is computationally efficient, requiring O(d)—instead of

O(d3)—updates per EM iteration. It is guaranteed to converge to the global solution.

VBLS has no parameters that need to be tuned; the prior distribution of α can be set to

be wide and uninformative (e.g., the hyperparameters aα,0 and bα,0 can be set to 10−8)

and need never be changed from data set to data set, making it “black-box”-like and

autonomous in its execution.

While VBLS is an iterative statistical method (performing slower than classical one-

shot linear least squares), it can be embedded into other more complex iterative methods

to realize a savings in computational efficiency. Its iterative nature means that it is

most advantageous in real-time scenarios where time constraints favor an approximately

accurate solution that is computed quickly over an extremely accurate solution that takes

unacceptably too long. VBLS also lends itself to incremental implementation as would

be needed in real-time analyses of brain information.

A point of concern that one could raise against the VBLS algorithm is in how far the

variational approximation in this algorithm affects the quality of function approximation.

It is known that factorial approximations to a joint distribution create more peaked
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distributions, such that one could potentially assume the VBLS might tend a bit towards

overfitting. It is important to notice, however, that in the case of VBLS, a more peaked

distribution over the posterior distribution of bm actually entails a stronger bias towards

excluding the associated input dimensions. A more peaked distribution over bm pushes

the regression parameter closer to zero. Thus, VBLS will be on the slightly pessimistic

side of function fitting and is unlikely to overfit, which corresponds to our empirical

experience.

EMG Prediction from Neural Firing: Our final application of VBLS examined

how well motor cortical activity can predict EMG activity and end-effector velocity data

as collected in monkey experiments in previous publications (Sergio & Kalaska 1998,

Kakei et al. 1999, Kakei et al. 2001). Our analysis confirmed that neurons in M1 carry

significant information about EMG activity and end-effector velocity. These results were

also obtained in the original papers but with single-neuron analysis techniques and not

a population code read-out as essentially performed by VBLS. Interestingly, we also

discovered that PM carries excellent information about EMG and end-effector velocity—

it has been previously suggested that only end-effector information is the primary variable

coded in PM. Most likely, this result is due to using population code-based analysis instead

of single neuron analysis.

Our findings did not suggest that either M1 or PM has a significant specialized pop-

ulation of neurons that only correlates with either EMG or end-effector data. Instead,

we found that most neurons were statistically significant for both EMG and end-effector
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data prediction. This rich information in the motor cortices mostly likely contributes sig-

nificantly to the success of brain-machine interface experiments, where electrode arrays

are placed over large cortical areas and the reconstruction of behavioral variables seems

to be relatively easy. VBLS offers an interesting new method to perform such read-outs

even in real-time with high statistical robustness.
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Chapter 3

Parameter Identification in Noisy Linear Regression

Learning the equations of motion of a complex physical system for the purpose of control is

a common problem in robotics. A typical system identification approach would first collect

a representative data set from the robot by measuring positions and motor commands

during some explorative movements. Then, velocity and acceleration information would

be obtained by numerical differentiation of position data. The data would also be digitally

filtered to reduce noise. As a third step, a function approximator would be applied to

learn the mapping from positions, velocities and accelerations to motor commands. Such

a function often has hundreds of inputs for complex robots. Finally, this mapping would

be inserted into the control loop of the robot, where appropriate motor commands are

predicted from desired position, velocity and acceleration information—all of which are

noiseless data.

The example scenario above is representative for a large number of system identifi-

cation problems. From a machine learning point of view, the interesting components are

that the learning data is high dimensional, has irrelevant and redundant dimensions and,

despite digital filtering, usually contains a significant amount of noise in the inputs to

59



the function approximator. Moreover, predictions are required from noiseless input data

since inputs generated during control originate from a planning system without noise.

The quality of control strongly depends on the quality of the learnt internal model in

advanced controllers and is critical in many robotic applications such as haptic devices,

surgical robotics and safe compliant assistive robots in human environments.

Ideally, system identification can be performed based on the CAD data of a robot

provided by the manufacturer, at least in the context of rigid body dynamic (RBD)

systems—which will be the exemplary scope of this paper. However, many modern light-

weight robots such as humanoid robots have significant additional nonlinear dynamics

beyond the rigid body dynamics model, due to actuator dynamics, routing of cables, use

of protective shells and other sources. In such cases, instead of trying to explicitly model

all possible nonlinear effects in the robot, empirical data-driven system identification

methods appear to be more useful. Under the assumption that a rigid body dynamics

model is sufficient to capture the entire robot dynamics, this problem is theoretically

straightforward as all unknown parameters of the robot such as mass, center of mass and

inertial parameters appear linearly in the rigid body dynamics equations (An, Atkeson

& Hollerbach 1988). Hence, after appropriate re-arrangement of the RBD equations of

motion, parameter identification can be performed with linear regression techniques.

In this chapter, we address the problem above in the context of linear regression since

an extension to nonlinear regression is straightforward using locally weighted learning

methods (Atkeson, Moore & Schaal 1997). If we wanted to use traditional linear regression

techniques for this scenario, we would encounter several deficiencies.
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Ill-conditioned data: For high dimensional robotic systems, it is not easy to generate

sufficiently rich data so that all parameters will be properly identifiable. As a result,

the regression problem for RBD parameter estimation is almost always numerically

ill-conditioned and bears the danger of generating parameter estimates that strongly

deviate from the true values, despite a seemingly low error fit of the data. For

such ill-conditioned data sets in high dimensional spaces, most traditional linear

regression techniques break down numerically since they are unable to generate

sparse and unbiased solutions identifying redundant and/or irrelevant dimensions.

Noisy sensory data: Observed sensory data is typically noisy. Noise sources exist in

both input and output data, and this effect is additionally amplified by numerical

differentiation to obtain derivative data. Even digital filtering will always leave

some noise in the signal in order to avoid oversmoothing of data. Traditional linear

regression techniques like OLS regression are only capable of dealing with noise in

the output data, and the presence of input noise introduces a persistent bias to the

regression solution. Alternative methods such as Total Least Squares (TLS) (Golub

& Van Loan 1989, Van Huffel & Vanderwalle 1991)—otherwise known as orthogonal-

least squares regression (Hollerbach & Wampler 1996) or, in statistics, as errors-in-

variables (EIV) when applied to a linear model (Van Huffel & Lemmerling 2002)—

address input noise, but they assume the variances of input noise and output noise

are the same (Rao & Principe 2002). In real-world systems, this assumption is not

necessarily true and, again, the resulting estimates will be biased, leading to inferior

generalization. There also exist noise-robust versions of standard algorithms such
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as Principal Component Analysis (PCA) (Sanguinetti, Milo, Rattray & Lawrence

2005) and other approaches such as Factor Analysis for regression, e.g., (Massey

1965), that attempt to explicitly model the input noise.

Physically implausible parameter estimates: Finally, there is no mechanism in the

regression problem for RBD model identification that ensures the identified param-

eters are physically plausible. Particularly in the light of insufficiently rich data and

nonlinearities beyond the RBD model, one often encounters physically incorrectly

identified parameters such as negative values on the diagonal of an inertial matrix.

Various methods exist to deal with some of the problems mentioned above, such as

regression based on singular-value decomposition (SVD) or ridge regression to cope with

ill-conditioned data (Belsley, Kuh & Welsch 1980), stepwise regression (Draper & Smith

1981), LASSO regression (Tibshirani 1996) or other L1-regularized methods to produce

sparse solutions, and TLS/orthogonal-least squares/EIV, Factor Analysis or noise-robust

PCA to address input noise (Hollerbach & Wampler 1996). Nevertheless, a comprehensive

approach addressing the entire set of issues has not been suggested so far. Recent work

such as Rao, Erdogmus, Rao & Principe (2003) has addressed the problem of input noise,

but in the context of system identification of a time-series, while ignoring the problems

associated with ill-conditioned data in high dimensional spaces.

In this chapter, we motivate the problem of input noise in linear regression applications

and identify possible solutions. Leveraging the Bayesian framework for linear regression

developed in Chapter 2, we present an extension of the algorithm that can handle noisy
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high-dimensional input data, while using Bayesian regularization methods to ensure ro-

bustness to ill-conditioned data (Ting, D’Souza & Schaal 2006). A post-processing step

ensures that the rigid body parameters are physically consistent by nonlinearly project-

ing the results of the Bayesian estimate onto the constraints. We evaluate our approach

on a parameter estimation problem for the RBD model (Ting, Mistry, Peters, Schaal &

Nakanishi 2006).

Our Bayesian estimation approach to the RBD parameter estimation that has all the

desired properties below:

• Explicitly identifies input and output noise in the data

• Is robust in face of ill-conditioned data

• Detects non-identifiable parameters

• Produces physically correct parameter estimates

3.1 Background

3.1.1 Parameter Estimation in Rigid Body Dynamics

Let us examine some of the problems associated with traditional system identification

methods before introducing our de-noising solution. We embed our discussions in the

context of RBD parameter estimation—a problem that is linear in the open parameters

despite the high level of nonlinearity of the RBD equations of motion. We discuss general

nonlinear system identification at the end of this chapter.
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The general RBD equations of motions are (Sciavicco & Siciliano 1996):

M (q) q̈ + C (q, q̇) q̇ + G (q) = τ (3.1)

where q, q̇, q̈ denote the vectors of joint positions, velocities, and accelerations, respec-

tively. The matrix M(q) is the RBD inertial matrix, the matrix C(q, q̇) has terms about

coriolis and centripetal forces, and the vector G(q) represents torques due to gravity.

Eq. (3.1) has one row for every degree-of-freedom (DOF) of the robot, e.g., 30-50 rows

for a humanoid robot. Every DOF is physically characterized by at least 10 parameters:

a mass parameter, a center of mass vector, and a positive definite inertial matrix; fric-

tion parameters can increase the number of parameters. Thus, for robot systems with

many DOFs, identifying RBD parameters is a problem involving hundreds of dimensions.

Interestingly, these parameters appear linearly in Eq. (3.1), such that, after some com-

plex rearrangement of the terms in Eq. (3.1), the system identification problem for RBD

becomes a linear regression problem.

We can now switch to viewing this system identification problem from the stance of

machine learning. Let us assume we have a data set {xi, yi}
N
i=1 consisting of N samples,

where xi ∈ <d×1 (d is the dimensionality of the input data) and yi is a scalar. As

mentioned previously, the RBD equations can be re-arranged to yield this structure. We

create a matrix X ∈ <N×d, where the input vectors xi are arranged in the rows of X,

and a vector y ∈ <N×1, where the corresponding scalar outputs yi are coefficients of y.
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3.1.2 Modeling Input Noise in Linear Regression

In Chapter 2, we introduced a computationally efficient Bayesian linear regression algo-

rithm that is suitable for high-dimensional data. Unfortunately, it does not model noise

in input data. To address this, we express the general model for linear regression with

noise-contaminated input and output data as follows:

yi =

d∑

m=1

wzmtim + εyi

xim = wxmtim + εxim

(3.2)

where ti is noiseless input data composed of tim elements, wz and wx are regression

vectors composed of wzm and wxm elements, respectively, and εy and εx are additive

mean-zero Gaussian noise. Only X and y are observable.

If the input data is noiseless (i.e., xm = wxmtm), then we obtain the familiar linear

regression equation of y = bTOLSx + εy, where bOLS,m = wzm/wxm. We can show this

using simple algebraic manipulation:

Given:

yi =
d∑

m=1

wzmtim + εyi
(3.3)

xim = wxmtim or, equivalently, tim =
xim
wxm

(3.4)

Substituting Eq. (3.4) into Eq. (3.3) gives: yi =
∑d

m=1 bOLS,mtim + εy, where bOLS,m =

wzm/wxm. The slightly more general formulation in Eq. (3.2) with distinct wxm and wzm
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coefficients will be useful in preparing our new algorithm. All the linear methods reviewed

in Chapter 2 do not account for noise in input data.

When the input data is contaminated with noise, it can be shown that the OLS

estimate will be bOLS,noise = γbtrue, where 0 < γ <= 1 (and btrue = bOLS), and the exact

value of γ depends on the amount of input noise. Consider the predictive distribution

p(yq|xq,X,y) =
∫
p(yq, t|xq,X,y)p(t)dt. If we assume that the prior distributions on y

and t are Gaussians, then we know that p(yq|xq,X,y) is a Gaussian as well. We can then

evaluate the integral and infer the mean and variance of p(yq|xq,X,y), resulting in the

following:

〈yq|xq〉 = WzWx

(
WT

xWx + Ψx

)−1
xq

= bOLS,noisex
q

where Wz is a diagonal matrix with wzm entries on its diagonal (and similarly, for Wx

and Ψx). Further algebraic manipulation of the expression for bOLS,noise reveals the

following:

bOLS,noise = WzWx

(
WT

xWx + Ψx

)−1

= WzWxW
−1
x W−1

x

(
WT

xWxW
−1
x W−1

x + ΨxW
−1
x W−1

x

)−1

= WzW
−1
x

(
I + ΨxW

−1
x W−1

x

)−1

= bOLS

(
I + ΨxW

−1
x W−1

x

)−1

(3.5)

where, in the second line of Eq. (3.5), we introduce a multiplicative factor of W−1
x W−1

x WxWx

or I (the identity matrix). Hence, bOLS,noise is always less than or equal to btrue. Thus,
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Figure 3.1: Graphical model for joint Factor Analysis for regression. Random variables
are in circular nodes, observed random variables are in shaded double circles, and point
estimated parameters are in square nodes.

OLS regression underestimates the regression vector and produces biased predictions, a

problem that cannot be fixed by adding more training data.

Intentionally, the input/output noise model formulation in Eq. (3.2) was chosen such

that it coincides with a version of a Factor Analysis (Massey 1965) tailored for regression

problems (please refer to Appendix C.1 for more details on Factor Analysis for regression).

The intuition of this model is given in Figure 3.1: every observed input xim and output

yi is assumed to be generated by a set of hidden variables tim and contaminated with

some noise, as given in Eq. (3.2).

The graphical model in Figure 3.1 compactly describes the full multi-dimensional

system: the variables xim, tim, wxm and wzm are duplicated d times for the d input

dimensions of the data—as represented by the four nodes in the plate indexed by m.

The other plate, indexed by i, shows that there are N samples of observed {xi, yi} data.

The goal of learning is to find the parameters wxm and wzm, which can only be achieved
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by estimating the hidden variables tim and the variances of all random variables. In

order to ensure that all parameters of the model are well-constrained, it needs to be

assumed that all tim follow a Gaussian distribution with mean zero and unit variance,

i.e., tim ∼ Normal(0, 1).

The specific version of Factor Analysis for regression depicted in Figure 3.1 is called

joint-space Factor Analysis regression or Joint Factor Analysis (JFA) regression, as both

input and output variables are treated the same in the estimation process (i.e., only

their joint distribution matters). While Joint Factor Analysis regression is well-suited for

modeling regression problems with noisy input data, it does not handle ill-conditioned

data very well and is computationally expensive for high dimensions due to a repeated

high dimensional matrix inversion in the ensuing iterative estimation procedure.

The goal of learning is to find parameters wxm and wzm, which can only be achieved

by estimating the hidden variables tim, zim and the variances of all random variables. Op-

timal prediction can then be performed with either noisy or noiseless inputs, by deriving

the appropriate conditional distributions.

In the following section, we develop a Bayesian treatment of Joint Factor Analysis

regression that is robust to ill-conditioned data, automatically detects non-identifiable

parameters, detects noise in input and output data.
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3.2 Bayesian Regression with Input Noise

3.2.1 EM-based Joint Factor Analysis

To start with, we introduce the hidden variables zim, as done in Section 2.2, so that our

noisy linear regression model from Eq. (3.2) now becomes:

yi =
d∑

m=1

zim + εyi

zim = wzmtim + εzim

xim = wxmtim + εxim

(3.6)

The new model is shown graphically in Figure 3.2. We use the EM algorithm to determine

all open parameters using maximum likelihood estimation, with the following probability

distributions over random variables:

yi|zi ∼ Normal(1T zi, ψy)

zim|tim, wzm ∼ Normal(wzmtim, ψzm)

xim|tim, wxm ∼ Normal(wxmtim, ψxm)

tim ∼ Normal(0, 1)

(3.7)

where 1 = [1, 1, ..., 1]T , zi ∈ <d×1 is composed of zim elements, wz ∈ <d×1 is composed of

wzm elements, and wx, ψz and ψx are similarly composed of wxm, ψzm and ψxm elements,

respectively. As Figure 3.2 shows, the regression coefficients wzm are now behind the fan-

in to the output yi.
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Figure 3.2: Graphical model for joint factor analysis for efficient estimation. Random
variables are in circular nodes, observed random variables are in shaded double circles,
and point estimated parameters are in square nodes. Note that square nodes for the noise
variances ψy and ψzm have been omitted from the model for graphical clarity.

This efficient Joint Factor Analysis formulation decouples the input dimension and

operates with O(d) per EM iteration—where d is the number of input dimensions, instead

of the approximately O(d3) per EM iteration in traditional Joint Factor Analysis.

3.2.2 Automatic Feature Detection

The efficient maximum likelihood formulation of Joint Factor Analysis regression is, how-

ever, still vulnerable to ill-conditioned data. Thus, we introduce a Bayesian layer on top

of this model by treating the regression parameters wz and wx probabilistically to protect

against overfitting, as shown in Figure 3.3. To do this, we introduce so-called “precision”

variables αm over each regression parameter wzm. The same αm is also placed over each

wxm, leading to a coupled regularization of wzm and wxm. As a result, the regression
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parameters are now distributed as wzm ∼ Normal(0, 1/αm) and wxm ∼ Normal(0, 1/αm),

where αm takes on a Gamma distribution with parameters aαm and bαm , shown below:

wz|α ∼
d∏

m=1

Normal (wzm; 0, 1/αm)

wx|α ∼

d∏

m=1

Normal (wxm; 0, 1/αm)

α ∼
d∏

m=1

Gamma (αm; aαm,0, bαm,0)

(3.8)

where aαm,0 and bαm,0 are initial hyperparameter values for the distribution of αm. The

rationale of this Bayesian modeling technique is as follows. The key quantity that de-

termines the relevance of a regression input is the parameter αm. A priori, we assume

that every wzm has a mean-zero distribution with broad variance 1/αm. We also assume

that the precision αm has an initial value 1 with large variance by setting both the initial

values aαm,0 and bαm,0 to 10−6. If the posterior value of αm turns out to be very large

after all model parameters are estimated, then the corresponding posterior distribution

of wzm must be sharply peaked at zero. Thus, this gives strong evidence that wzm = 0

and that the input tm contributes no information to the regression model. If an input

tm contributes no information to the output, then it is also irrelevant how much it con-

tributes to xim. That is to say, the corresponding inputs xm could be treated as pure

noise. Coupling both wzm and wxm with the same precision variable αm accomplishes

exactly this effect. In this way, the Bayesian approach automatically detects irrelevant

input dimensions and regularizes against ill-conditioned data sets.

Even with the Bayesian layer added, the entire regression problem can be treated

as an EM-like learning problem (Ghahramani & Beal 2000). Our goal is to maximize
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Figure 3.3: Graphical model for Bayesian version of joint factor analysis for noisy linear
regression. Random variables are in circular nodes, observed random variables are in
shaded double circles, and point estimated parameters are in square nodes. Note that
square nodes for the noise variances ψy and ψzm have been omitted from the model for
graphical clarity.

the log likelihood log p(y|X), i.e., the ‘incomplete” log likelihood, as all hidden prob-

abilistic variables are marginalized out. Due to analytical problems, we do not have

access to this incomplete log likelihood, but rather only to a lower bound of it. This

lower bound is based on an expected value of the so-called “complete” data likelihood,

〈log p(y,Z,T,wz,wx,α|X)〉, formulated over all variables of the learning problem, where:

log p(y,Z,T,wz,wx,α|X)

=
N∑

i=1

log p(yi|zi) +
N∑

i=1

d∑

m=1

log p(zim|wzm, tim) +
N∑

i=1

d∑

m=1

log p(xim|wxm, tim)

+
N∑

i=1

d∑

m=1

log p(tim) +
d∑

m=1

log {p(wzm|αm)p(αm)}

+
d∑

m=1

log {p(wxm|αm)p(αm)} + consty,Z,T,wz ,wx,α

(3.9)
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and where Z ∈ <N×d with the vector zi in its rows and T ∈ <N×d with the vector ti in its

rows. The expectation of this complete data likelihood should be taken with respect to

the true posterior distribution of all hidden variables Q(α,wz,wx,Z,T). Unfortunately,

this is an analytically intractable expression. Instead, a lower bound can be formulated

using a technique from variational calculus where we make a factorial approximation of

the true posterior in terms of: Q(α,wz,wx,Z,T) = Q(α)Q(wz)Q(wx)Q(Z,T). We now

have a mechanism that infers the significance of each dimension’s contribution to the

observed output y and observed inputs X.

We can derive the EM update equations using standard manipulations of Normal

and Gamma distributions (please refer to Appendix C.2 for derivations), reaching the

following:

E-step :

σ2
wzm

=
1

1
ψzm

∑N
i=1〈t

2
im〉 + 〈αm〉

(3.10)

〈wzm〉 =
σ2
wzm

ψzm

N∑

i=1

〈zimtim〉 (3.11)

σ2
wxm

=
1

1
ψxm

∑N
i=1〈t

2
im〉 + 〈αm〉

(3.12)

〈wxm〉 =
σ2
wxm

ψxm

N∑

i=1

xim〈tim〉 (3.13)

âαm = aαm,0 + 1 (3.14)

b̂αm = bαm,0 +
〈w2

zm〉 + 〈w2
xm〉

2
(3.15)

M-step :
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ψy =
1

N

N∑

i=1

(
y2
i − 21yi〈zi〉 + 1T 〈ziz

T
i 〉1
)

(3.16)

ψzm =
1

N

N∑

i=1

(
〈z2
im〉 − 2〈wzm〉〈zimtim〉 + 〈w2

zm〉〈t
2
im〉
)

(3.17)

ψxm =
1

N

N∑

i=1

(
x2
im − 2〈wxm〉〈tim〉xim + 〈w2

xm〉〈t
2
im〉
)

(3.18)

where the covariance matrix, Σ, of the joint posterior distribution of Z and T is







Σzz Σzt

Σtz Σtt







,

with:

Σzz = M −
M11TM

ψy + 1TM1
(3.19)

Σtt = K−1 + K−1〈Wz〉
TΨ−1

z ΣzzΨ
−1
z 〈Wz〉K

−1 (3.20)

Σzt = −Σzz〈Wz〉Ψ
−1
z K−1 (3.21)

Σtz = ΣT
zt (3.22)

K = I + 〈WT
xWx〉Ψ

−1
x + 〈WT

z Wz〉Ψ
−1
z (3.23)

M = Ψz + 〈Wz〉
(
I + 〈WT

xWx〉Ψ
−1
x + (ΣWz

)mmΨ−1
z

)−1
〈Wz〉

T (3.24)

and where 〈Wx〉 is a diagonal d by d matrix with 〈wx〉 along its diagonal. Similarly,

〈Wz〉, Ψx, Ψz are d by d diagonal matrices with diagonal vectors of 〈wz〉 , ψx and ψz,

respectively. The E-step updates for Z and T are then:

〈zi〉 =
yi
ψy

1TΣzz + xi 〈Wx〉
T

Ψ−1
x Σtz (3.25)

〈ti〉 =
yi
ψy

1TΣzz 〈Wz〉Ψ
−1
z K−1 + xi 〈Wx〉

T
Ψ−1
x Σtt (3.26)
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σ2
z = diag(Σzz) (3.27)

σ2
t = diag(Σtt) (3.28)

cov(z, t) = diag(Σzt) (3.29)

The final regression solution regularizes over the number of retained inputs in the

regression vector, performing a functionality similar to ARD (Neal 1994). It is important

to notice that the resulting generalized EM updates still have a computational complexity

of O(d) for each EM iteration—a level of efficiency that has not been accomplished with

previous Joint Factor Analysis regression models, especially with one containing a full

Bayesian treatment of JFA regression. The result is an efficient Bayesian algorithm that

is robust to high dimensional ill-conditioned noisy data.

Initialization of Parameters: Initialization of parameters is crucial when using the

EM algorithm and will affect the quality of the final converged solution. The observed

{xi, yi} data is assumed to be preprocessed to have a mean of 0 and a variance of 1.

Included below is a description of how each parameter is initialized. Note that this set of

initializations does not need to be modified from data set to data set.

• wx: These weights are all initialized to 1, with a little bit of randomness added to

them (i.e. 1 + randn(1, d) ∗ 0.1, where d is the number of input dimensions).

• wz: These weights are initialized to the correlation vector found using Partial Least

Squares (xT y) and normalized such that the length is 1.
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• ψx: The variance of x is set to the observed variance of x (that is, 1, since x has

been preprocessed already).

• ψz: The variance of the hidden variable z is set to 1 with a little bit of randomness

added (1 + randn(1, d) ∗ 0.1).

• ψy: ψy is initialized to 1.

• {aαm,0, bαm,0}: Both aαm,0 and bαm,0 are initialized to 10−8 so that the prior over

αm is flat and uninformative. That is to say, the precision αm has an initial mean

of 1, with a very large variance.

For details on how to check for convergence of the EM algorithm, please refer to

Appendix C.3.

3.2.3 Inference of the Regression Solution

Estimating the rather complex probabilistic Bayesian model for Joint Factor Analysis

regression gives us the distributions and mean values for all hidden variables. However,

one additional step is required to infer the final regression parameters, which, in our

application, are the RBD parameters. For this purpose, we consider the predictive dis-

tribution p(yq|xq) for a new noisy test input xq and its unknown output yq. We can

calculate 〈yq|xq〉, the mean of the distribution associated with p(yq|xq), by conditioning

yq on xq and marginalizing out all hidden variables. Since an analytical solution of the

resulting integral is only possible for the probabilistic Joint Factor Analysis regression

model in Figure 3.2 and not for the full Bayesian treatment, we restrict our computations

to this simpler probabilistic model, and assume that Wx and Wz are replaced by their
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point estimates 〈Wx〉 and 〈Wz〉, such that our results will hold in approximation for the

Bayesian model.

Thus, the predictive distribution is:

p(yq|xq,X,Y) =

∫ ∫

p(yq,Z,T|xq,X,Y)dZdT (3.30)

where X and Y are noisy input and noisy output data used for training. From solving

this integral, can infer the value of the regression estimate b̂ since 〈yq|xq〉 = b̂Txq. The

resulting regression estimate, given noisy inputs xq and noisy outputs yq, is b̂noise:

b̂noise =
ψy1

TB−1

ψy − 1TB−11
Ψ−1
z 〈Wz〉A

−1
noise 〈Wx〉

T
Ψ−1
x (3.31)

where Ψx is a diagonal matrix with the vector ψx on its diagonal (〈Wx〉, 〈Wz〉, Ψz are

similarly defined diagonal matrices with vectors of 〈wx〉, 〈wz〉 and ψz on their diagonals,

respectively) and where:

Anoise = I +
〈
WT

xWx

〉
Ψ−1
x +

〈
WT

z Wz

〉
Ψ−1
z (3.32)

B =

(
11T

ψy
+ Ψ−1

z − Ψ−1
z 〈Wz〉

T
A−1 〈Wz〉Ψ

−1
z

)

(3.33)

If we compare b̂noise in Eq. (3.31) to b̂JFA, the regression estimate derived for Joint

Factor Analysis regression (which can be arrived at also by conditioning y on x and

marginalizing the latent variables) is:

b̂JFA = WzA
−1
JFAWT

xΨ−1
x (3.34)
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AJFA = I + WT
xWxΨ

−1
x Wx

we can see that b̂noise contains an additional term
〈
WT

z Wz

〉
Ψ−1
z in its A expression, due

to the introduction of hidden variables z. b̂noise is scaled by an additional variance-related

term because of this issue as well.

It is important to note that the regression vector b̂noise given by Eq. (3.31) is for

optimal prediction from noisy input data. However, for system identification in RBD, we

are interested in obtaining the true regression vector, which is the regression vector that

predicts output from noiseless inputs. Thus, the result in Eq. (3.31) is not quite suitable

and what we want to calculate is the mean of p(yq|tq), where tq are noiseless inputs.

To address this issue, we can take the limit of b̂noise by letting ψx → 0 and interpret

the resulting expression to be the true regression vector for noiseless inputs (as ψx → 0,

the amount of input noise approaches 0). The resulting regression vector estimate b̂true

becomes:

b̂true =
ψy1

TC−1

ψy − 1TC−11
Ψ−1
z 〈Wz〉

T 〈Wx〉
−1 (3.35)

where C =
(

11T

ψy
+ Ψ−1

z

)

, and this is the desired regression vector estimate for noiseless

data that we use in our evaluations.
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3.3 Post-processing for Physically Consistent Rigid Body

Parameters

Before our evaluations, we need to return for a moment to the specifics of our intended

application domain of RBD parameter estimation. Given a Bayesian estimate of the

RBD parameters, we would like to ensure that the inferred regression vector satisfies the

constraints given by positive definite inertia matrices and the parallel axis theorem.

In our RBD estimation problem, there are 11 RBD parameters for each DOF, which

we arrange in an 11-dimensional vector θ consisting of the following parameters: mass,

three center of mass coefficients multiplied by the mass and six inertial parameters. This

choice of parameterization is the only one that is identifiable using linear regression (An

et al. 1988). Additionally, we include viscous friction as the 11th parameter.

In order to enforce the aforementioned physical constraints, we introduce a 11-dimensional

virtual parameter vector θ̂ that we assume is used in a nonlinear transformation to gen-

erate θ, e.g., θ = f(θ̂). This nonlinear transformation between virtual parameters θ̂ and

actual parameters θ is shown below for one DOF:

θ1 = θ̂
2

1 θ2 = θ̂2θ̂
2

1

θ3 = θ̂3θ̂
2

1 θ4 = θ̂4θ̂
2

1

θ5 = θ̂
2

5 +
(

θ̂
2

4 + θ̂
2

3

)

θ̂
2

1 θ6 = θ̂5θ̂6 − θ̂2θ̂3θ̂
2

1 (3.36)

θ7 = θ̂5θ̂7 − θ̂2θ̂4θ̂
2

1 θ8 = θ̂
2

6 + θ̂
2

8 +
(

θ̂
2

2 + θ̂
2

4

)

θ̂
2

1

θ9 = θ̂6θ̂7 + θ̂8θ̂9 − θ̂3θ̂4θ̂
2

1 θ10 = θ̂
2

7 + θ̂
2

9 + θ̂
2

10 +
(

θ̂
2

2 + θ̂
2

3

)

θ̂
2

1

θ11 = θ̂
2

11
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In essence, the virtual parameters θ̂ correspond to the square root of the mass, the true

center-of-mass coordinates (i.e., not multiplied by the mass), a Cholesky decomposition

of the DOF’s inertial matrix at the center of gravity to ensure positive definiteness of

the inertial matrix, and the square root of the viscous friction coefficient. The functions

in Eq. (3.36) encode the parallel axis theorem and some additional constraints, ensuring

that the mass and viscous friction coefficients remain strictly positive. Given the above

formulation, any arbitrary set of virtual parameters gives rise to a physically consistent

set of actual parameters for the RBD problem. For a robotic system with s DOFs,

Eq. (3.36) is repeated for each DOF. Since there are 11 features for each DOF, the result

is a 11s-dimensional regression vector θ, where θm = fm(θ̂) (for m = 1..d where d = 11s),

There are at least two possible ways to enforce the physical constraints of RBD pa-

rameters in our Bayesian estimation algorithm. The first (ideal) approach involves refor-

mulating our algorithm using the virtual parameters θ̂ described previously instead of the

actual parameters θ. Unfortunately, this method will lead to an analytically intractable

set of update equations due to the nonlinear relationship between virtual and actual pa-

rameters. In the second approach, we can consider a post-processing step, where the

unconstrained parameters are appropriately projected onto the constrained parameters.

For this purpose, we assume that we would like to find the optimal virtual parameters in

a least squares sense, i.e., by minimizing the cost function:

J =

〈
1

2
(y − Xθ)T (y − Xθ)

〉

(3.37)
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where X and y are input and output data, and we have the constraints of θm = fm(θ̂).

For the moment, we will ignore issues of noise in input data and ill-conditioned data sets.

Let us assume that some arbitrary estimation algorithm generated an estimate for the

unconstrained parameters as θuc. Thus, the constrained parameters can be written as

θ = θuc + ∆θ, where ∆θ denotes the difference between constrained and unconstrained

parameters. Substituting this into Eq. (3.37) results in:

J =

〈
1

2
(y − Xθ)T (y − Xθ)

〉

=
1

2

〈

(y − Xθuc)
T (y − Xθuc)

〉

−
〈

(y − Xθuc)
T

X∆θ

〉

+
1

2

〈
∆θ

TXTX∆θ
〉

(3.38)

Minimizing this cost function with respect to the virtual parameters only requires consid-

eration of the second and third terms of Eq. (3.38) since the first term does not depend

on the virtual parameters.

Now, let us consider algorithms to generate θuc. Among the most straightforward

algorithms is OLS, which is equivalent to reformulating Eq. (3.37) in terms of θuc:

Juc =

〈
1

2
(y − Xθuc)

T (y − Xθuc)

〉

, (3.39)

taking the derivative ∂Juc

∂θuc
and setting it to zero:

∂J

∂θuc
= − (y − Xθuc)

T
X = 0 (3.40)

If we insert this result into Eq. (3.38), we see that the second term of this cost function

equals zero, leaving only the third term to be considered in order to obtain the optimal
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virtual parameters. Thus, we can conclude that for optimal projection of the uncon-

strained parameters onto the constrained parameters, all we need to do is to minimize

the difference between unconstrained and constrained parameters under the metric XTX.

We can consider other algorithms (other than OLS) to generate θuc. For instance,

SVD regression (Belsley et al. 1980) performs OLS in a subspace of the original input

dimensionality of the regression problem. Thus, the cost functions in Eqs. (3.39) and

(3.38) would be formulated only over the input dimensions that were identified to be

relevant to the regression problem. Hence, the results regarding the minimization of the

difference between unconstrained and constrained parameters hold as well.

More interestingly, if we use our Bayesian estimation method to generate θuc, the

result will be similar to SVD regression in that some of the input dimensions will be

eliminated. Additionally, the algorithm also estimates the noise in the inputs and returns

a regression vector that can be applied to noiseless query points. If we re-express the

noisy inputs X as Xt + Γ, where Xt are noiseless inputs and Γ is the input noise, then

we can re-write the third term of Eq. (3.38) in terms of de-noised quantities:

1

2
∆θ

T
(
XT
t Xt

)
∆θ (3.41)

The second term of Eq. (3.38) does not yield exactly zero as in an OLS regression, but,

empirically, it is very close to zero, such that only the term in Eq. (3.41) matters in the

actual optimization problem.

82



In summary, we can see that in order to minimize the least squared error in Eq. (3.37)

with respect to the physically constrained parameters of RBD, we can follow an approxi-

mate two-step procedure. First, we apply our Bayesian algorithm (or any other algorithm,

for that matter) to come up with an optimal unconstrained parameter estimate θuc. Then,

we find the virtual parameter estimates θ̂ (and the corresponding physically consistent

parameter estimates θ) such that the error between θ and θuc is minimized in the sense

of Eq. (3.41). If the noiseless inputs are not estimated explicitly, the term Xt is replaced

by the noisy inputs X. The optimization of Eq. (3.41) is easily achieved numerically

as it is a simple convex function with a unique global minimum. If θuc is estimated by

OLS or SVD regression, the results for the constrained parameters are optimal. If θuc is

estimated by our Bayesian or any other nonlinear method, the results for the constrained

parameters are approximately optimal. Empirically, we found that the above proposed

procedure always achieves satisfying results.

3.4 Evaluation

We evaluated our algorithm on both synthetic data and robotic data for the task of sys-

tem identification. The goal of these evaluations was to determine how well our Bayesian

de-noising algorithm performs compared to other standard techniques for parameter es-

timation in the presence of noisy input and noisy output data.

First, we start by evaluating our algorithm on a synthetic dataset in order to illustrate

its effectiveness at de-noising input and output data. Then, we apply the algorithms on a

7 DOF robotic oculomotor vision head and a 10 DOF robotic anthromorphic arm, both
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Figure 3.4: Robotic oculomotor vision head by Sarcos (Cambridge, MA).

shown in Figures 3.4 and 3.4, respectively, for the task of parameter estimation in rigid

body dynamics.

3.4.1 Synthetic Data

We synthesized random input training data consisting of 10 relevant dimensions and 90

irrelevant and redundant dimensions. The first 10 input dimensions were drawn from a

multi-dimensional Gaussian distribution with a random covariance matrix. The output

data was generated using an ordered regression vector btrue = [1, 2, ..., 10]T . Output

noise was added with a signal-to-noise ratio (SNR) of 5. Then, we added Gaussian noise

with varying SNRs (a SNR of 2 for strongly noisy input data and a SNR of 5 for less

noisy input data) to the relevant 10 input dimensions. A varying number of redundant

data vectors was added to the input data, and these were generated from random convex
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Figure 3.5: Robotic anthropomorphic arm by Sarcos (Cambridge, MA).

combinations of the 10 noisy relevant data vectors. Finally, we added irrelevant data

columns, drawn from a Normal(0, 1) distribution, until a total of 100 input dimensions

were attained. The result was an input training dataset that contained irrelevant and

redundant dimensions. Test data was created using the same method outlined above,

except that input and output data were both noiseless.

We compared our Bayesian de-noising algorithm with the following methods: i) OLS

regression; ii) stepwise regression (Draper & Smith 1981), which tends to be inconsis-

tent in the presence of collinear inputs (Derksen & Keselman 1992); iii) PLS regres-

sion (Wold 1975), a slightly heuristic but empirically successful regression method for high

dimensional data; iv) LASSO regression (Tibshirani 1996), which gives sparse solutions

by shrinking certain coefficients to zero under the control of a regularization parameter;

v) our probabilistic treatment of Joint Factor Analysis regression in Figure 3.2; and vi)
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Figure 3.6: Average normalized mean squared prediction errors (nMSE) on noiseless test
data for a 100 dimensional dataset with 10 relevant input dimensions and various combi-
nations of redundant input dimensions v and irrelevant input dimensions u, averaged over
10 trials. Output data has SNR = 5. Algorithms evaluated include OLS, stepwise regres-
sion (STEP), PLS regression (PLS), LASSO regression (LASSO), Joint Factor Analysis
regression (JFA) and our Bayesian de-noising algorithm (BAYES).
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our Bayesian de-noising algorithm shown in Figure 3.3. In this synthetic evaluation, there

was no need to constrain parameters according to some physical consistency rules.

The Bayesian de-noising algorithm had an improvement of 10 to 300% compared to

other algorithms, as the black bars in Figures 3.6(a) and 3.6(b) illustrate. One interesting

observation is that for the case where the 90 input dimensions are all irrelevant, the

Bayesian de-noising algorithm did not give a significant reduction in error as in the other

three scenarios. This result can be explained by the fact that the other algorithms suffer

primarily from redundant inputs, but not so much from irrelevant inputs, which does not

cause numerical problems. The true power of our Bayesian algorithm lies in its ability to

identify relevant dimensions in the presence of redundant and irrelevant data.

3.4.2 Robotic Oculomotor Vision Head

Table 3.1: Root mean squared errors for position (in radians), velocity (radians/sec) and
feedback command (in Newton-meters) for the robotic oculomotor vision head.

Algorithm Position (rad) Velocity (rad/s) Feedback (Nm)
Ridge Regression 0.0291 0.2465 0.3969

Bayesian De-noising 0.0243 0.2189 0.3292
LASSO Regression 0.0308 0.2517 0.4274
Stepwise Regression FAILURE FAILURE FAILURE

The Sarcos robotic oculomotor vision head, shown in Figure 3.4, has 7 DOFs, giving

77 features in total (there are 11 features per DOF). The kinematic structure of robotic

systems always creates non-identifiable parameters and thus, redundancies (An et al.

1988). We implemented a computed torque control law on the robot, using estimated

parameters from each technique. Table 3.1 shows the root mean squared errors averaged

over all DOFs. The Bayesian parameter estimation approach performed around 10 to
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20% better than ridge regression with gradient descent, well LASSO regression performed

worse. Stepwise regression produced RBD parameters that were physically impossible to

run on the robotic head. This can be attributed to stepwise regression’s failure to identify

the relevant features in the data set.

3.4.3 Robotic Anthropomorphic Arm

We also evaluated the parameter estimation algorithms on a 10 DOF Sarcos robotic

anthropomorphic arm, shown in Figure 3.4, and evaluations were done in a similar way

as for the robot head. We collected about a million data points from the arm and

downsampled the data to a more manageable size of 500,000. Table 3.2 shows the results

averaged over all 10 DOFs. The Bayesian parameter estimation approach performed

around 5 to 17% better than the other techniques. LASSO regression failed, due to

over-aggressive clipping of relevant dimensions, and stepwise regression produced RBD

parameters that were impossible to run on the robotic arm.

Table 3.2: Root mean squared errors for position (in radians), velocity (radians/sec) and
feedback command (in Newton-meters) for the robotic anthropomorphic arm.

Algorithm Position (rad) Velocity (rad/s) Feedback (Nm)
Ridge Regression 0.0210 0.1119 0.5839

Bayesian De-noising 0.0201 0.0930 0.5297
LASSO regression FAILURE FAILURE FAILURE
Stepwise regression FAILURE FAILURE FAILURE
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3.5 Discussion

This chapter addresses the problem of learning for system identification, as, for example,

in a scenario where we have observed a system through empirical data and would like to

uncover its true parameters. Learning for system identification differs from learning for

prediction. Learning for prediction is the more common problem setting in many machine

learning techniques for regression. Good prediction is often possible without modeling all

components of the generative system. For instance, linear regression with noise in both

the input and output data achieves surprisingly good prediction results on test data that

has the same noise properties as the training data, despite the well-known fact that linear

regression is not built to deal with noise in the input data.

The interesting new component of system identification comes from the desire to use

the identified model in other ways than in the training scenario. In robotics, a typical

example is the use of the system model for prediction with noiseless input data. In this

scenario, the training data might have been contaminated by a large amount of input

noise. Another typical application is to create an analytical inverse of an identified model

as often needed in model-based control. For such applications, the system model needs

to be identified as accurately as possible. This is only possible if all parameters of the

data generating model (in particular all noise processes) are identified accurately.

We address linear system identification for situations where noise exists in both input

and output data—a typical case in most robotic applications where data is derived from

noisy sensors. Additionally, we allow for the case of high-dimensional data, where many

input dimensions are potentially redundant or irrelevant. To date, no efficient and robust
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algorithm has been suggested for such a problem setup. Inspired by factor analysis regres-

sion, a classical machine learning technique, we develop a novel full Bayesian treatment

of the linear system identification problem. Due to effective Bayesian regularization, this

algorithm is robust to high dimensional, ill-conditioned data with noise-contaminated in-

put and output data and remains computationally efficient, i.e., O(d) per iteration of the

underlying EM-like algorithm, where d is the number of input dimensions. This algorithm

has no parameters that need manual tuning. The algorithm is, however, iterative, but

so is probabilistic factor analysis. The iterative nature of the algorithm allows it to be

embedded into other more complex, iterative methods and makes it suitable for real-time

learning scenarios.

We used this algorithm to estimate parameters in rigid body dynamics—an estima-

tion problem that is linear in the unknown parameters. Since these parameters have

physical meaning, it was necessary to enforce physical consistent parameters with a post-

processing step. The physical constraints arose from positive definiteness of inertia matri-

ces, positiveness of mass parameters, and the parallel axis theorem. We demonstrated the

efficiency of our algorithm by applying it to a synthetic dataset, a 7 DOF robotic vision

head and a 10 DOF robotic anthropomorphic arm. Our algorithm successfully identified

the system parameters with 10 to 300% higher accuracy than alternative methods on syn-

thetic data for parameter estimation in linear regression. It performed 5 to 25% better

on real robot data, proving to be a competitive alternative for parameter estimation on

complex high degree-of-freedom robotic systems.

If desired, our Bayesian algorithm can easily be extended to nonlinear system iden-

tification in the framework of Locally Weighted Learning (LWL) (Atkeson et al. 1997).
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The only modification needed is to change the linear regression problem to a Bayesian

weighted linear regression problem (Gelman et al. 2000). Thus, a piecewise linear model

identification can be achieved, similar to Schaal & Atkeson (1998) and (Vijayakumar,

D’Souza & Schaal 2005). Parameters identified in such a nonparametric way usually lack

any physical interpretability, such that our suggested post-processing to enforce physical

correctness of the parameters is not applicable. We will leave the problem of full nonlinear

system identification for future work.
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Chapter 4

Dealing with Outlier-Infested Data

Robotic systems and their control mechanisms rely crucially on the quality of sensory

data in order to make robust control decisions. While certain sensors such as poten-

tiometers or optical encoders are inherently easy to assess in their noise characteristics,

other sensors such as visual systems, global positioning system (GPS) devices and sonar

sensors may provide measurements that are infested by outliers. Thus, robust and reliable

outlier removal is necessary in order to include these types of data in control processes.

The particular application domain of legged locomotion is especially vulnerable to per-

ceptual data of poor quality, as one undetected outlier can potentially disturb the balance

controller to the point that the robot loses stability.

Additionally, for real-time applications, storing data samples may not be an option

due to the high frequency of sensory data and insufficient memory resources. In this

scenario, sensor data is made available one sample at a time (arriving sequentially over

time) and must be discarded once they have been observed.
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4.1 Background

An outlier is generally defined as an observation that “lies outside some overall pattern of

distribution” (Moore & McCabe 1999). Outliers may arise from sensor noise (producing

values that fall outside the valid range of values), temporary sensor failures or unantic-

ipated disturbances in the environment (e.g., a brief change of lighting conditions for a

visual sensor). A typical approach of detecting outliers is to characterize what normal

observations look like, and then to single out samples that deviate from these normal

properties. Existing methods for outlier detection include i) methods that classify a data

sample based on a (Mahalanobis) distance from the expected value, ii) approaches that

use information-theoretic principles, such as selecting the subset of data points that min-

imize the prediction error, and iii) techniques that assume that the data was generated

by some special generative model.

Outlier classification based on a Mahalanobis distance can work well, but it requires

the setting of a threshold that defines whether a point is an outlier or not. This threshold

typically is determined using expert domain knowledge or tuned manually beforehand in

order to determine its empirically optimal value for the system.

In information-theoretic approaches, outlier detection may be done through active

learning (Abe, Zadrozny & Langford 2006), clustering (Breitenbach & Grudic 2005, Ng,

Jordan & Weiss 2001) or mixture models (Aitkin & Wilson 1980, Scott 2005). These

methods may require sampling, the setting of certain parameters (i.e. the optimal k in

k-means clustering (MacQueen 1967)), and may not all lend themselves to a real-time

implementation. Another common method is the Random Sample Consensus (RANSAC)
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algorithm (Fischler & Bolles 1981). RANSAC tries to find the subset of data samples

that produces the lowest error in an iterative fashion. Unfortunately, this may be too

computationally intensive for real-time applications and may involve heuristic methods

to narrow down the searchable space of subsets.

Mixture models fall into the second and third category, assuming the data was gen-

erated by some underlying structure, e.g. a mixture of a Gaussian distribution and

a uniform distribution (Fox, Burgard, Dellaert & Thrun 1999, Konolige 2001, Faul &

Tipping 2001). The probabilistic assumptions of this approach, however, may be restric-

tive and may not work as well on data sets where outliers and inliers are not demarked

by a large margin. Finally, there also exist outlier-robust versions of standard algorithms

such as Independent Component Analysis (ICA) and PCA, e.g., (Hubert, Rousseeuw &

Vanden Branden 2005).

The ideal algorithm should detect and remove outliers in real-time—without the need

parameter tuning, sampling or model assumptions. In this chapter, we propose a novel

Bayesian algorithm that automatically detects outliers in general linear models. We

introduce our Bayesian linear regression algorithm, before presenting a modified version

that can be implemented in real-time. We evaluate our algorithm on both synthetic and

robotic data, demonstrating how it performs at least as well as other standard approaches.

In certain cases, it outperforms well-tuned alternative methods. Finally, we extend this

idea to the Kalman filter, producing a filter that tracks observations and detects outliers

in the observations. We show that this outlier-robust Kalman filter performs as well

as other robust Kalman filter algorithms and requires no parameter tuning by the user,

offering a competitive alternative to filtering sensor data.
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Before going into greater detail, though, it is important to realize that in order to

distinguish outliers from inliers, some amount of prior knowledge about the presence of

outliers is necessary. As an illustrative example, consider Figures 4.1(a) and 4.1(b), which

show the number of motorcycle impacts (Silverman 1985) and time of eruptions for the

Old Faithful geyser in Yellowstone National Park (Azzalini & Bowman 1990). It would

be tricky to distinguish noise or outliers from the data structure if the source of the data

set (i.e., how noisy the data is or how many outliers appear in the data) was not known.

This domain knowledge translates naturally into a noise or outlier prior.
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Figure 4.1: Motorcycle impact data set from (Silverman 1985) and Old Faithful geyser
eruption data set (Azzalini & Bowman 1990).

4.2 Linear Regression with Outliers

Given an observed data set D = {xi, yi}
N
i=1 with N data samples, where xi ∈ <d×1, yi

is a scalar and d is the number of input dimensions, we can arrange the input vectors
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xi in the rows of the matrix X and set the corresponding scalar outputs yi to be the

coefficients of the vector y. A general model for linear regression is then:

yi = bTxi + εyi
(4.1)

where b ∈ <d×1 and εyi
is additive mean-zero Gaussian noise. The OLS estimate of

the regression vector bOLS is
(
XTX

)−1
XTy. However, it is not uncommon for observed

data to have outliers, and if outliers are not removed, the regression estimate bOLS will

be biased.

4.2.1 Bayesian Regression for Automatic Outlier Detection

We can modify Eq. (4.1) so that the observed outputs y have heteroscedastic (i.e., un-

equal) variances, introducing a weight wi for each yi such that the variance of yi is

weighted with wi. Gelman et al. (2000) do this, but assume the weights are known be-

forehand. Using incorrect estimates for the weights may lead to deteriorated performance.

As a result, we favor a different approach and treat the weights probabilistically in order

to learn them.

Another robust regression algorithm with a Bayesian treatment is that of Faul & Tip-

ping (2001). A Gaussian prior is placed over b, and hyperparameters are introduced in

order to have automatic relevance determination on the input data features. However,

a mixture model is used to explain outliers (with uniform or Gaussian distribution used

to capture them). In contrast, our model makes no assumptions about the underlying
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data structure. It is a Bayesian treatment of weighted regression that detects and elim-

inates outliers automatically (Ting, D’Souza & Schaal 2007). It has the following prior

probability distributions on its random variables:

yi ∼ Normal
(
bTxi, σ

2/wi
)

b ∼ Normal (b0,Σb,0)

wi ∼ Gamma (awi
, bwi

)

(4.2)

where b0 ∈ <d×1 is the prior mean of b; Σb,0 is the prior covariance of b and a d by

d diagonal matrix; and σ2 is the variance of the mean-zero normally distributed output

noise.

We can treat the entire regression problem as an EM learning problem. Our goal is to

maximize the log likelihood log p(y|X). Due to analytical issues, we do not have access

to the log likelihood, but instead, only a lower bound of it. The lower bound is based on

an expected value of the “complete” data likelihood, 〈log p(y,b,w|X)〉, where:

log p(y,b,w|X) =
N∑

i=1

log p(yi|xi, wi,b) + log p(b) +
N∑

i=1

log p(wi) (4.3)

The expectation of the complete data likelihood should be taken with respect to the

true posterior distribution of all hidden variables Q(b,w). Since this is an analytically

intractable expression, a lower bound can be formulated using a technique from varia-

tional calculus where we make a factorial approximation of the true posterior as follows:

Q(b,w) = Q(b)Q(w). While losing a small amount of accuracy, all resulting posterior
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distributions over hidden variables become analytically tractable. The final posterior

EM-update equations are listed below:

Σb =

(

Σ−1
b,0 +

1

σ2

N∑

i=1

〈wi〉xix
T
i

)−1

(4.4)

〈b〉 = Σb

(

Σ−1
b,0b0 +

1

σ2

N∑

i=1

〈wi〉 yixi

)

(4.5)

〈wi〉 =
awi,0 + 1

2

bwi,0 + 1
2σ2

(

yi − 〈b〉T xi

)2
+ 1

2σ2 x
T
i Σbxi

(4.6)

σ2 =
1

N

N∑

i=1

[(

yi − 〈b〉T xi

)2
+ xTi Σbxi

]

(4.7)

These update equations need to be run iteratively until all parameters and the complete

log likelihood converge to steady values.

Examining Eq. (4.6) reveals that if the prediction error in yi is so large that it domi-

nates over the other denominator terms, then the weight 〈wi〉 of that point will be very

small. As this prediction error term in the denominator goes to ∞, 〈wi〉 approaches 0.

As can be seen in both Eqs. (4.4) and (4.5), a data point with an extremely small weight

will have a smaller contribution to the calculation of the regression estimate 〈b〉. This

effect is equivalent to the detection and removal of an outlier if the weight of the data

point (xi, yi) is small enough.

Initialization of Priors: A few comments should be made regarding the initialization

of the priors used in Eqs. (4.4) to (4.7). First of all, Σb,0—the prior covariance of

b—need only to be set to a large enough value (e.g., 103I, where I is the identity

matrix), which corresponds to an uninformative prior on b (i.e., the probability
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distribution is a relatively flat Gaussian). Σb,0 in Eq. (4.4) can be interpreted to

be a stabilizing ridge-like value, similar to that of ridge regression, to ensure that

the regression does not break down in the presence of collinear input data.

Secondly, b0 is usually initialized to zero, unless informative prior knowledge is

available. As b0 is multiplied by Σ−1
b,0, it does not have any real influence on the

update equations unless Σb,0 is chosen to be informative.

Thirdly, the prior scale parameters awi,0 and bwi,0 should be selected so that the

weights 〈wi〉 are 1 with some confidence. That is to say, we start by assuming that

all points are inliers. For example, we can set awi,0 = 1 and bwi,0 = 1 so that 〈wi〉

has a prior mean of awi,0/bwi,0 = 1 with a variance of awi,0/b
2
wi,0

= 1. By using

these values, the maximum value of 〈wi〉 is capped at 1.5. If the user has good

reason to insert strong biases towards particular parameter values (e.g., some prior

knowledge on the amount of outliers), then these values should be used. Otherwise,

the set of prior parameter values outlined above can be used.

The key point of this Bayesian treatment of weighted regression with heteroscedastic

variance is that each data point will be assigned a posterior weight that is indicative of the

amount of variance it has, relative to the average variance of the dataset. Consequently,

a data point will be downweighted if its variance is much higher than that of the average

variance. This algorithm does not require any tuning of threshold values or any user

intervention beforehand, performing automatic outlier detection and removal in a black

box-like way.
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4.2.2 Incremental Version

The algorithm above is suitable if the data D is available in batch form. However, as

in most robotic systems, data is often available from sensors one sample at a time, and

filtering of the data needs to be done in a real-time, incremental (i.e. online) fashion.

Hence, we take the Bayesian weighted model from Eq. (4.2) and modify it to make it an

online algorithm. As typical in online algorithms, we introduce a forgetting rate to specify

the window over which we wish to average data (Ljung & Soderstrom 1983). We use a

scalar forgetting rate, λ, where 0 ≤ λ ≤ 1, to exponentially discount data collected in the

past. The forgetting rate enters the algorithm by accumulating the sufficient statistics

of the batch algorithm in an incremental way. The sufficient statistics can be extracted

by examining the EM update equations in Eqs. (4.4) to (4.7). As the kth data point

becomes available from the sensors, we can calculate the update equations for b and σ2

as follows:

Σ
(k)
b =

(

Σ−1
b,0 +

1

σ2
sumwxxT

k

)−1

(4.8)

〈b〉(k) = Σ
(k)
b

(

Σ−1
b,0b0 +

1

σ2
sumwyx

k

)

(4.9)

(
σ2
)(k)

=
1

Nk

[

sumwy2

k − 2sumwyx
k 〈b〉(k) +

(

〈b〉(k)
)T

sumwxxT

k 〈b〉(k)

+1Tdiag
{

sumwxxT

k Σ
(k)
b

}]

(4.10)

where the sufficient statistics, exponentially discounted by λ, are:

Nk = 1 + λNk−1 (4.11)
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sumwxxT

k = 〈wk〉xkx
T
k + λsumwxxT

k−1 (4.12)

sumwyx
k = 〈wk〉 ykxk + λsumwyx

k−1 (4.13)

sumwy2

k = 〈wk〉 y
2
k + λsumwy2

k−1 (4.14)

and all of Nk, sumwxxT

k , sumwyx
k , sumwy2

k are 0 for k = 0.

Notice that the calculation of the posterior covariances of b in Eqs. (4.4) and (4.8)

requires a matrix inversion, resulting in a computational complexity of O(d3). This will be

fine for low-dimensional systems. However, for systems where the data has a large number

of input dimensions, the matrix inversion becomes computationally prohibitive. In such

situations, Eq. (4.8) can be re-written recursively, as in Recursive Least Squares (Ljung

& Soderstrom 1983, Bierman 1977), in order to reduce the computational complexity to

O(d) per EM iteration. Given knowledge of the frequency of incoming data, the value

of λ can be set accordingly, since the number of data samples that is not “forgotten” is

1/(1− λ). Additionally, the regression estimates come with a measure of confidence (the

posterior covariance of b), such that the quality of the estimates and predictions can be

judged.

Naturally, this incremental approximation of the batch Bayesian algorithm comes at

a cost since data points that initially appeared to be outliers may actually have been

inliers (once we have collected enough data samples to realize this). If the forgetting rate

λ used is small enough, then this effect will be less pronounced since the window size of

past data samples we are averaging over will be small as well. Hence, if this inlier falls

outside the window of the past 1/(1−λ) data samples, the effect of mistaking an inlier as
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an outlier will be less pronounced. At the same time, λ should not be too small in order

to ensure that the discrepancy in results between the incremental and batch versions is

not too great. This trade-off between preserving equivalency with the batch version and

discounting past events is a known issue with the use of forgetting factors for incremental

algorithms.

4.3 An Outlier-Robust Kalman Filter

4.3.1 Background

The Kalman filter (Kalman 1960, Kalman & Bucy 1961) is widely used for estimating

the state of a dynamic system, given noisy measurement data. It is the optimal linear

estimator for linear Gaussian systems, giving the minimum mean squared error (Morris

1976). Unlike techniques that require access to the entire set of observed samples, such

as the Kalman smoother, e.g., (Jazwinski 1970, Bar-Shalom, Li & Kirubarajan 2001),

the Kalman filter assumes that only observations up to the current time step have been

observed, making it suitable for real-time tracking. Using state estimates, the filter can

also estimate what the corresponding (output) data should be. However, the performance

of the Kalman filter degrades when the observed data contains outliers.

To address this, previous work has tried to make the Kalman filter more robust to

outliers by addressing the sensitivity of the squared error criterion to outliers (Tukey

1960, Huber 1964). One class of approaches considers non-Gaussian distributions for

random variables, e.g., (Sorensen & Alspach 1971, West 1981, West 1982, Smith & West

1983) since multivariate Gaussian distributions are known to be susceptible to outliers.
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For example, Meinhold & Singpurwalla (1989) use multivariate Student-t distributions.

However, the resulting estimation of parameters may be quite complicated for systems

with transient disturbances.

Other efforts have modeled observation and state noise as non-Gaussian, heavy-tailed

distributions in order to account for non-Gaussian noise and outliers, e.g., (Masreliez 1975,

Masreliez & Martin 1977, Schick & Mitter 1994). These filters are typically more difficult

to implement and may no longer provide the conditional mean of the state vector. Other

approaches use resampling techniques, e.g., (Kitagawa 1987, Kramer & Sorenson 1988),

or numerical integration, e.g., (Kitagawa 1996, Kitagawa & Gersch 1996), but these may

require heavy computation not suitable for real-time applications.

Yet another class of methods uses a weighted least squares approach, as done in

robust least squares (Ryan 1997, Huber 1973), where the measurement residual error is

assigned some statistical property. Some of these algorithms fall under the first category of

approaches as well, assuming non-Gaussian distributions for variables. Each data sample

is assigned a weight that indicates its contribution to the hidden state estimate at each

time step. This technique has been used to produce a Kalman filter that is more robust

to outliers, e.g., (Durovic & Kovacevic 1999, Chan, Zhang & Tse 2005). Nevertheless,

these methods usually model the weights as some heuristic function of the data, e.g., the

Huber function (Huber 1973), and often require tuning or cross-validation of threshold

parameters for optimal performance. Using incorrect or inaccurate estimates for the

weights may lead to deteriorated performance, so special attention and care is necessary

when using these techniques.

103



In this section, we are interested in making the Kalman filter more robust to the

outliers in the observations (i.e. the filter should identify and eliminate possible outliers

as it tracks observed data). Estimation of the system dynamics and detection of outliers in

the states are different problems and left for future work. We extend the weighted least

squares approach of Section 4.2 to the Kalman filter, resulting in a filter that detects

outliers in the observations without any parameter tuning or heuristic methods (Ting,

Theodorou & Schaal 2007). The filter learns the weights of each data sample and the

system dynamics, using an incremental EM framework (Dempster et al. 1977). For ease

of analytical computation, we assume Gaussian distributions for variables and states.

4.3.2 The Kalman Filter

Let us assume we have data observed over N time steps, {zk}
N
k=1, and the corresponding

hidden states as {θk}
N
k=1, where θk ∈ <d2×1, zk ∈ <d1×1. Assuming a time-invariant

system, the Kalman filter system equations are:

zk = Cθk + vk

θk = Aθk−1 + sk

(4.15)

where C ∈ <d1×d2 is the observation matrix, A ∈ <d2×d2 is the state transition matrix,

vk ∈ <d1×1 is the observation noise at time step k, and sk ∈ <d2×1 is the state noise

at time step k. We assume vk and sk to be uncorrelated additive mean-zero Gaussian

noise: vk ∼ Normal (0,R), sk ∼ Normal (0,Q), where R ∈ <d1×d1 is a diagonal matrix

with r ∈ <d1×1 on its diagonal, and Q ∈ <d2×d2 is a diagonal matrix with q ∈ <d2×1
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on its diagonal. R and Q are covariance matrices for the observation and state noise,

respectively.
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Figure 4.2: Graphical model of Kalman filter and robust weighted Kalman filter. Circular
nodes are random variables and shaded double circles are observed random variables.
System matrices have been omitted for the sake of graphical clarity.

Figure 4.2(a) shows the graphical model for the standard Kalman filter. Its corre-

sponding filter propagation and update equations are, for k = 1, .., N :

Propagation:

θ
′
k = A 〈θk−1〉 (4.16)

Σ′
k = AΣk−1A

T + Q (4.17)

Update:

S′
k =

(
CΣ′

kC
T + R

)−1
(4.18)
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K ′
k = Σ′

kC
TS′

k (4.19)

〈θk〉 = θ
′
k +K ′

k

(
zk − Cθ

′
k

)
(4.20)

Σk =
(
I −K ′

kC
)
Σ′
k (4.21)

where 〈θk〉 is the posterior mean vector of the state θk, Σk is the posterior covariance

matrix of θk, and S′
k is the covariance matrix of the residual prediction error—all at

time step k. In this problem, the system dynamics—C, A, R and Q—are unknown, and

it is possible to use a maximum likelihood framework to estimate these parameter val-

ues (Myers & Tapley 1976). Unfortunately, this standard Kalman filter model considers

all data samples to be part of the data cloud and is not robust to outliers.

4.3.3 The Robust Weighted Kalman Filter

To overcome this limitation, we introduce a scalar weight wk for each observed data

sample zk such that the variance of zk is weighted with wk, as done in Section 4.2.1.

We model the weights to be Gamma distributed random variables, as done previously in

Section 4.2.1 for weighted linear regression, and learn estimates for the system dynamics

at each time step. A Gamma prior distribution is chosen for the weights in order to ensure

they remain positive. Figure 4.2(b) shows the graphical model of the robust weighted

Kalman filter. The resulting prior distributions of the random variables are:

zk|θk, wk ∼ Normal (Cθk,R/wk)

θk|θk−1 ∼ Normal (Aθk−1,Q)

wk ∼ Gamma (awk
, bwk

)

(4.22)
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Using an incremental EM framework, we can learn the weights of each data sample

and system dynamics by maximize the log likelihood log p(z1:N ). We have access to

only a lower bound of this measure, based on the expected value of the complete log

likelihood—which, until time step k, is given by:

log p(z1:k,θ0:k,w) = log

{
k∏

i=1

p(zi|θi, wi)p(θi|θi−1)p(θ0)

}

(4.23)

The expectation of the complete log likelihood should be taken with respect to the

true posterior distribution of all hidden variables Q (w,θ). Since this is an analyti-

cally intractable expression, we use a technique from variational calculus to construct

a lower bound and make a factorial approximation of the true posterior as follows:

Q (w,θ) =
∏K
i=1Q (wi)

∏K
i=1Q (θi|θi−1)Q(θ0). The factorization of θ considers the in-

fluence of each θi from within its Markov blanket, conserving the Markov property that

Kalman filters, by definition, have.

While losing a small amount of accuracy, all resulting posterior distributions over

hidden variables become analytically tractable. This factorial approximation was chosen

purposely so that Q(wk) is independent from Q(θk); performing joint inference of wk and

θk does not make sense in the context of our generative model. The posterior distribution

of the weights w can then be inferred, in an variational E-step, to be:

〈wk〉 =
awk,0 + 1

2

bwk,0 +
〈

(zk − Ckθk)
T

R−1
k (zk − Ckθk)

〉 (4.24)

107



To derive the posterior mean and update of θ, we can first derive the recursive prop-

agation and update equations of the Kalman filter using Bayes’ rule and the Markov

assumption. The resulting propagation and update equations of the robust weighted

Kalman filter are:

Propagation:

θ
′
k = A 〈θk−1〉 (4.25)

Σ′
k = AΣk−1A

T + Q (4.26)

Update:

S′
k =

(

CΣ′
kC

T +
1

〈wk〉
R

)−1

(4.27)

K ′
k = Σ′

kC
TS′

k (4.28)

〈θk〉 = θ
′
k +K ′

k

(
zk − Cθ

′
k

)
(4.29)

Σk =
(
I −K ′

kC
)
Σ′
k (4.30)

Eqs. (4.25) to (4.30) can be re-expressed, with a little algebraic manipulation, in terms

of the posterior mean and variance for θ:

Σk =
(

〈wk〉C
T
kR

−1
k Ck +

(
AΣk−1A

T + Qk

)−1
)−1

(4.31)

〈θk〉 = Σk

((
AΣk−1A

T + Qk

)−1
Ak 〈θk−1〉 + 〈wk〉C

T
kR−1

k zk

)

(4.32)
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The system dynamics—C,A,R and Q—can be estimated in the M-step to be:

Ck =

(
k∑

i=1

〈wi〉 zi 〈θi〉
T

)(
k∑

i=1

〈wi〉
〈
θiθ

T
i

〉

)−1

(4.33)

Ak =

(
k∑

i=1

〈θi〉 〈θi−1〉
T

)(
k∑

i=1

〈
θi−1θ

T
i−1

〉

)−1

(4.34)

rkm =
1

k

k∑

i=1

〈wi〉
〈

(zim − Ck(m, :)θi)
2
〉

(4.35)

qkn =
1

k

k∑

i=1

〈

(θin − Ak(n, :)θi−1)
2
〉

(4.36)

where m = 1, .., d1, n = 1, .., d2; rkm is the mth coefficient of the vector rk; qkn is the nth

coefficient of the vector qk; Ck(m, :) is the mth row of the matrix Ck; Ak(n, :) is the nth

row of the matrix Ak; and awk,0 and bwk,0 are prior scale parameters for the weight wk.

Since storing sensor data is not possible in real-time applications, Eqs. (4.33) to (4.36)—

which require access to all observed data samples up to time step k—need to be re-written

using only values observed, calculated or used in the current time step k. We can do this

by collecting sufficient statistics in Eq. (4.33) to (4.36) and rewriting them as: (4.36) and

rewriting them as:

Ck = sumwzθ
T

k

(

sumwθθ
T

k

)−1
(4.37)

Ak = sumθθ
′

k

(

sumθ
′
θ
′

k

)−1
(4.38)

rkm =
1

k

[

sumwzz
km − 2Ck(m, :)sumwzθ

km + diag
{

Ck(m, :)sumwθθ
T

k Ck(m, :)
T
}]

(4.39)

qkn =
1

k

[

sumθ2

kn − 2Ak(n, :)sumθθ′

kn + diag
{

Ak(n, :)sumθ
′
θ
′

k Ak(n, :)
T
}]

(4.40)
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where m = 1, .., d1, n = 1, .., d2. The sufficient statistics, which are all a function of values

observed, calculated or used in time step k (e.g., 〈wk〉, zk, 〈θk〉, 〈θk−1〉 etc.) are:

sumwzθ
T

k = 〈wk〉 zk 〈θk〉
T + sumwzθ

T

k−1 sumwθθ
T

k = 〈wk〉
〈
θkθ

T
k

〉
+ sumwθθ

T

k−1

sumθθ
′

k = 〈θk〉 〈θk−1〉
T + sumθθ

′

k−1 sumθ
′
θ
′

k =
〈
θk−1θ

T
k−1

〉
+ sumθ

′
θ
′

k−1

sumwzz
km = 〈wk〉 z

2
km + sumwzz

k−1 sumwzθ
km = 〈wk〉 zkmθk + sumwzθ

k−1,m

sumθ2

kn =
〈
θ2
kn

〉
+ sumθ2

k−1,n sumθθ′

kn = 〈θkn〉 〈θk−1〉 + sumθθ′

kn

Eqs. (4.24) to (4.30) and (4.37) to (4.40) should be computed once for each time step

k, e.g., (Ghahramani & Hinton 1996, Neal & Hinton 1999), when the data sample zk

becomes available.

Initialization of Priors: A few remarks should be made regarding the initialization of

priors used in the equations above. In particular, the prior scale parameters awk,0

and bwk,0 should be selected so that the weights 〈wk〉 are 1 with some confidence.

That is to say, the algorithm starts by assuming most data samples are inliers. As

described in Section 4.2.1, we set awk,0 = 1 and bwk,0 = 1 and use these values for

any data set unless prior information regarding presence of outliers is available.

If the user has prior knowledge regarding the strong or weak presence of outliers

in the data set (and hence, a good reason to insert strong biases towards partic-

ular parameter values), the prior scale parameters of the weights can be modified

accordingly to reflect this. Since some prior knowledge about the observed data’s

properties must be known in order to distinguish whether a data sample is an outlier
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or part of the data’s structure, this Bayesian approach provides a natural framework

to incorporate this information.

Secondly, the algorithm is relatively insensitive to the the initialization of A and C

and will always converge to the same final solution, regardless of these values. For

our experiments, we initialize C = A = I, where I is the identity matrix. Finally,

the initial values of R and Q should be set based on the user’s initial estimate of

how noisy the observed data is (e.g., R = Q = 0.01I for noisy data, R = Q = 10−4I

for less noisy data (Maybeck 1979)).

Outlier detection in the Kalman filter emerges in a similar manner to linear regression. If

the prediction error of a data sample zk is very large, then the weight 〈wk〉 of that data

sample will be very small. This leads to a very small S′
k and small Kalman gain K ′

k. In

short, the influence of the data sample zk will be downweighted when predicting θk.

The resulting robust weighted Kalman filter has a computational complexity on the

same order as that of a standard Kalman filter since matrix inversions are still needed

(for the calculation of covariance matrices). In comparison to other Kalman filters that

use heuristics or require more involved implementation, this outlier-robust Kalman filter

is principled and easy to implement.

4.3.4 Monitoring the Residual Error

A common sanity check is to monitor the residual error of the data z1:N and the hidden

states θ1:N in order to ensure that the residual error values stay within the 3σ bounds

computed by the filter (Maybeck 1979). If we had access to the true state θk for time

step k, we would plot the residual state error (θk − 〈θk〉) for all time steps k, along with
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the corresponding ±3σk values, where σ2
k = diag {Σk}. We would also plot the residual

prediction error (zk − CA 〈θk−1〉) for all time steps k, along with the corresponding ±3σzk

values, where σ2
zk

= diag {S′
k}.

With these graphs, we should observe the residual error values remaining within

the ±3σ bounds and check that the residual error does not diverge over time. Residual

monitoring may be useful to verify that spurious data samples are rejected since processing

of these samples may result in corrupted filter computations. It offers a peek into the

Kalman filter, providing insights as to how the filter performs.

4.4 Evaluation

4.4.1 Linear Regression

We evaluated our algorithm’s ability to automatically detect outliers on a synthetic data

set, before implementing it on a robotic dog, LittleDog, manufactured by Boston Dynam-

ics Inc. (Cambridge, MA). We compared it to four other techniques for outlier detection:

i) a thresholding approach that classifies a data sample as an outlier if its Mahalanobis

distance exceeds an optimal hand-tuned threshold; ii) a 2-component mixture model (a

Gaussian distribution to account for inliers and a uniform distribution for outliers); iii)

robust least squares regression with bisquare weights (Hoaglin 1983); and iv) Faul &

Tipping’s variational Bayesian algorithm for robust regression (see Section 4.2.1).
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Table 4.1: Average normalized mean squared prediction error for a linear function with
5 input dimensions, evaluated in batch form over 10 trials for all algorithms: σ is the
standard deviation of the true conditional output mean and SNR of the outputs is 10.

Algorithm
Distance of outliers from mean
+3σ + 2σ + σ

Thresholding 0.0903 0.0503 0.0232
Mixture Model 0.1327 0.0688 0.0286

Robust Least Squares 0.1890 0.1518 0.0880
Robust Regression 0.1320 0.0683 0.0282

Bayesian weighted regression 0.0273 0.0270 0.0210

4.4.1.1 Synthetic Data

First, we evaluated all five algorithms on a linear regression problem, where the data is

available in batch form. The synthetic data set had 5 input dimensions, 1000 data points

(20% of which were outliers), and additive Gaussian noise with a signal-to-noise ratio

(SNR) of 10. Outliers were created to be kσ away from the true mean of the outputs,

where σ is the standard deviation of the true conditional mean of the outputs and k is

an integer scaling factor. Table 4.1 shows the average prediction error on noiseless test

data for all algorithms. Bayesian weighted linear regression achieves the lowest average

normalized mean squared error (nMSE). Thresholding works well when the threshold

value is hand-tuned optimally, while the remaining methods are less robust to outliers.

Next, the algorithms were evaluated incrementally using a forgetting rate of λ =

0.999 on the synthetic training data from the first experiment. Robust least squares was

omitted since it is a batch algorithm, and making it recursive is non-trivial. Figures 4.3(a)

and 4.3(b) track the error in the predicted outputs on the training data. The Bayesian

weighted algorithm, shown in the dark blue dotted line, reduces the error to a value that

is lowest.
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Figure 4.3: Normalized mean squared error values for the synthetic batch data sets
used in Table 4.1, evaluated in an incremental manner for thresholding, mixture models,
robust regression of Faul & Tipping (2001), and Bayesian weighted regression (Bayes.
regression). λ = 0.999.
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Figure 4.4: LittleDog quadruped robot by Boston Dynamics (Cambridge, MA).

4.4.1.2 LittleDog Robot

We evaluated the algorithms on a 12 degree-of-freedom (DOF) robotic dog, LittleDog,

as shown in Figure 4.4. The dog has two sources that measure its orientation: the

motion capture (MOCAP) system and an on-board inertia measurement unit (IMU).

Both provide a quaternion q of the robot’s orientation: qMOCAP from the MOCAP and

qIMU from the IMU. qIMU drifts over time since the IMU cannot provide stable orientation

estimation but its signal is clean. qMOCAP has outliers and noise, but no drift. We want to

estimate the offset between qMOCAP and qIMU, and this offset is a noisy, outlier-infested,

slowly drifting signal.

Figure 4.5(a) shows the offset data between qMOCAP and qIMU for one of the four

quaternion coefficients, collected over 6000 data samples. The thresholding, mixture

model and variational Bayesian robust regression approaches appear sensitive to outliers

(occurring between the 4000th and 5000th sample). In comparison, the incremental

version of Bayesian weighted regression is far less sensitive to outliers.
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Figure 4.5: Predicted versus observed offset data between the qIMU and qMOCAP, shown
for one of the four quaternion coefficients (λ = 0.999). Observed outputs are noisy and
contain outliers.
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4.4.2 Weighted Kalman Filter

We evaluated our robust weighted Kalman filter on synthetic and robotic data sets and

compared it with three other filters. We omitted the filters of Durovic & Kovacevic

(1999) and Chan et al. (2005) since we had difficulty implementing them and getting

them to work. Instead, we used a hand-tuned thresholded Kalman filter to serve as a

baseline comparison. We compared our robust weighted Kalman filter to two other filters:

i) the standard Kalman filter and ii) a Kalman filter where outliers are determined by

thresholding on the Mahalanobis distance. This threshold value is manually hand-tuned

for a particular data set. If the Mahalanobis distance is less than a certain threshold

value, then it is considered an inlier and processed. Otherwise, it is an outlier and

ignored. This threshold value is hand-tuned manually in order to find the optimal value

for a particular data set. If we have a priori access to the entire data set and are able to

tune this threshold value accordingly, the thresholded Kalman filter gives near-optimal

performance.

First, we simulate a real data set where hidden states are unknown and only access to

observed data is available. Although they are linear, Kalman filters are commonly used

to track more interesting “nonlinear” behaviors (i.e., not just a straight line). For this

reason, we try the methods on a synthetic data set exhibiting nonlinear behavior, where

the system dynamics are unknown. We also conducted experiments on a synthetic data set

where the system dynamics of the generative model are known. These experiments yield

similar performance results to that where the system dynamics are unknown. Finally, we

run all Kalman filters on data collected from LittleDog.
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For these experiments, we are interested in the Kalman filter’s prediction of the ob-

served (output) data and detection of outliers in the observations. We are not interested

in the estimation of the system dynamics or in the estimation (or outlier detection) of

the states. Estimation of the system matrices for the purpose of parameter identification

and detection of outliers in the states are different problems and left to another paper.

4.4.2.1 Synthetic Data

We created data exhibiting nonlinear behavior, where C, A, R, Q and states are un-

known, high noise is added to the (output) data, and a data sample is an outlier with

1% probability. One-dimensional data is used for ease of visualization, and Figure 4.6(a)

shows a noisy cosine function with outliers, over 500 time steps. For optimal performance,

C, A, R and Q were manually tuned for the standard Kalman filter—a tricky and time-

consuming process. In contrast, the system dynamics were learnt for the thresholded

Kalman filter using a maximum likelihood framework (i.e. using Eqs.(4.37) to (4.40)

without any weights).

Figure 4.6(b) shows how sensitive the standard Kalman filter is to outliers, while the

weighted robust Kalman filter seems to detect them quite well. In Figure 4.7(a), we

compare the weighted robust Kalman filter with thresholded filter. Both filters appear

to perform as well, which is unsurprising, given the amount of manual tuning required

by the thresholded Kalman filter.

Figure 4.7(b) shows that the residual prediction error on the outputs stays within the

±3σ bounds. Graphs showing the estimated states were omitted, but they show similar

trends in the accuracy results.
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Figure 4.6: One-dimensional data showing a cosine function with noise and outliers (and
unknown system dynamics) for 500 samples at 1 sample/time step
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4.4.2.2 LittleDog Robot
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Figure 4.8: Observed quaternion data from LittleDog robot: a slowly drifting noisy signal
with outliers. Data is shown for 6000 samples. We assume that each data sample is made
available at each time step.

We present the tracking performance of the filters on quaternion data from LittleDog,

described previously in Section 4.4.1.2.

Figure 4.8 shows the quaternion data over 6000 data samples, at 1 sample/time step.

There are various approaches to estimating this slowly drifting signal, depending on the

quality of estimate desired. We can estimate it with a straight line, as done in Sec-

tion 4.4.1.2. However, if we want to estimate this slowly drifting signal more accurately,

we can use the proposed outlier-robust Kalman filter to track it. For optimal perfor-

mance, we, once again, manually tuned C, A, R and Q for the standard Kalman filter.

The system dynamics of the thresholded Kalman filter were learnt, and its threshold

parameter was manually tuned for best performance on this data set.

The standard Kalman filter fails to detect outliers occurring between the 4000th and

5000th sample, as seen in Figure 4.9(a). Figure 4.9(b) shows that the thresholded Kalman
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Figure 4.9: Predicted quaternion data for the Kalman filter and robust weighted Kalman
filter, shown for 6000 samples. We assume that each data sample is made available at
each time step. Note the change of scale in axis from Figure 4.8.
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filter does not react as violently as the standard Kalman filter to outliers and, in fact,

appears to perform as well as the robust weighted Kalman filter. This is to be expected,

given that we hand-tuned the threshold parameter for optimal performance.

In this experiment, the advantages offered by the weighted Kalman filter are clear.

It outperforms the traditional Kalman filter, while achieving a level of performance on

par with a thresholded Kalman filter (where the threshold value is manually tuned for

optimal performance).

4.5 Discussion

We introduced a Bayesian weighted regression algorithm that automatically detects and

eliminates outliers in real-time. We extended this approach to produce a Kalman filter

that is able to track and detect outliers in the observations. Both methods are easy to

use and do not require any parameter tuning, interference from the user, heuristics or

sampling. Both learn the value of weights associated with the data samples, but they

also require an initial weight prior be set (that is, an outlier prior that indicates how

strong the presence of outliers are in the data). However, in order to perform outlier

detection correctly, this prior is necessary in order to distinguish outliers from structure

in the data. The Bayesian weighted regression algorithm outperforms standard methods

in batch or incremental settings. The outlier-robust Kalman filter performs as well as a

“hand-tuned” Kalman filter that requires a priori knowledge of the entire data.

The calculation of the posterior covariances of b in Eqs. (4.4) and (4.8) requires a

matrix inversion, resulting in a computational complexity of O(d3). This will be fine

123



for low-dimensional systems. However, for systems where the data has a large number

of input dimensions, the matrix inversion becomes computationally prohibitive. In such

situations, Eq. (4.8) can be re-written recursively, as in Recursive Least Squares (Ljung

& Soderstrom 1983, Bierman 1977), in order to reduce the computational complexity to

O(d) per EM iteration.

The regression estimates come with a measure of confidence, such that the quality of

the estimates and predictions can be judged. Notice that the calculation of the posterior

covariances of b in Eqs. (4.4) and (4.8) requires a matrix inversion, resulting in a com-

putational complexity of O(d3). This will be fine for low-dimensional systems. However,

for systems where the data has a large number of input dimensions, the matrix inversion

becomes computationally prohibitive. In such situations, Eq. (4.8) can be re-written re-

cursively, as in Recursive Least Squares (Ljung & Soderstrom 1983, Bierman 1977), in

order to reduce the computational complexity to O(d) per EM iteration.
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Chapter 5

Nonlinear High-Dimensional Regression

Having addressed the problem of noisy high-dimensional linear regression, we now move to

nonlinear high-dimensional regression problems. Gaussian processes (Bernardo & Smith

1994, Williams & Rasmussen 1995, Rasmussen 1996) (GPs) are competitive function

approximators for nonlinear regression problems. However, they can be computationally

prohibitive for large data sets since they require a matrix inversion that takes around

O(N3), where N is the number of data samples. Additionally, they are not suitable

for high-dimensional ill-conditioned problems (where many of the input dimensions are

redundant or irrelevant). Although recent work has tried to overcome these limitations,

e.g., (Csato & Opper 2002, Lawrence, Seeger & Herbrich 2003, Y. Shen & Seeger 2006,

Snelson & Ghahramani 2006a, Snelson & Ghahramani 2006c), Gaussian process regression

is not quite ready for real-time robot learning applications, where the input data is high-

dimensional and fast incremental learning is necessary. In such scenarios, local methods

such as Locally Weighted Projection Regression (LWPR) (Vijayakumar et al. 2005) may

be more suitable and have been shown to be effective for real-time learning of motor skills

on humanoid robots.
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We could consider how one would perform Bayesian locally weighted regression in a

batch setting (i.e. the entire data set is available at the outset), where the locality of each

model is learnt probabilistically. In Schaal & Atkeson (1994), locally weighted learning

was applied to robotic devilsticking, and the locality of each model was determined by

incremental gradient descent based on stochastic leave-one-out cross-validation.

We could also move beyond locally weighted regression and consider the more gen-

eral category of kernel-based methods, which include Parzen windows, kernel regression,

locally weighted regression, radial basis function networks, Reproducing Kernel Hilbert

Spaces, Support Vector Machines, and Gaussian process regression. Most algorithms

start with parameterizations that are the same for all kernels, independent of where in

data space the kernel is used, but later recognize the advantage of locally adaptive ker-

nels (Friedman 1984, Poggio & Girosi 1990, Fan & Gijbels 1996). Such locally adaptive

kernels are useful in scenarios where the data characteristics vary greatly in different

parts of the workspace (e.g., in terms of data density, curvature and output noise). For

instance, in Gaussian process (GP) regression, using a nonstationary covariance function,

e.g., (Paciorek & Schervish 2004), allows for such a treatment. Performing optimizations

individually for every kernel, however, becomes rather complex and is prone to overfit-

ting due to a flood of open parameters. Previous work has suggested gradient descent

techniques with cross-validation methods or involved statistical hypothesis testing for op-

timizing the shape and size of a kernel in a learning system (Fan & Gijbels 1992, Fan &

Gijbels 1995, Schaal & Atkeson 1994, Friedman 1984).
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In this chapter, we consider local kernel shaping by averaging over data samples with

the help of locally polynomial models and formulate this approach, in a Bayesian frame-

work, for function approximation with both piecewise linear models and nonstationary

GP regression. Our local kernel shaping algorithm (Ting, Kalakrishnan, Vijayakumar &

Schaal 2008) is computationally efficient—capable of handling large data sets, can deal

with functions of strongly varying curvature, data density and output noise, and even

rejects outliers automatically. The algorithm automatically learns the size of the data

neighborhood contributing to each local model (i.e. the “bandwidth” or spatial distance

metric of the local model). A Bayesian approach offers error bounds on the distance

metric and incorporates this uncertainty in the predictive distributions.

Our approach to nonstationary GP regression differs from previous work by avoiding

Markov Chain Monte Carlo (MCMC) sampling (Rasmussen & Ghahramani 2002, Meeds

& Osindero 2005) and by exploiting the full nonparametric characteristics of GPs in or-

der to accommodate nonstationary data. Other approaches to kernel shaping include

the random varying coefficient model (Longford 1993), local polynomial modeling (Fan

& Gijbels 1996), use of asympototic analysis (Schucany 1995), and entropy-based mea-

sures (Ormoneit & Hastie 1999)—where the volume instead of the bandwidth of the kernel

is optimized, to name a few. Many of these methods, however, require cross-validation

or are sensitive to the initialization of parameters.

One of the core application domains for our work is learning control, where computa-

tionally efficient function approximation and highly accurate local linearizations from data

are crucial for deriving controllers and for optimizing control along trajectories (Atkeson

& Schaal 1997). The high variations from fitting noise, seen in Figures 5.4(a) and 5.5(a)
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are harmful to the learning system, potentially causing the controller to be unstable. Our

final evaluations illustrate such a scenario by learning an inverse kinematics model for a

real robot arm.

5.1 Bayesian Local Kernel Shaping

We develop our approach in the context of nonparametric locally weighted regression with

locally linear polynomials (Atkeson et al. 1997), assuming, for notational simplicity, only

a one-dimensional output—extensions to multi-output settings are straightforward. We

assume a training set of N samples, D = {xi, yi}
N
i=1, drawn from a nonlinear function:

y = f(x) + ε

that is contaminated with mean-zero (but potentially heteroscedastic) noise ε. Each

data sample consists of a d-dimensional input vector xi and an output yi. We wish to

approximate a locally linear model of this function at a query point xq ∈ <d×1 in order

to make a prediction yq = bTxq, where b ∈ <d×1.

We assume the existence of a spatially localized weighting kernel:

wi = K (xi,xq,h)
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that assigns a scalar weight to every {xi, yi} according to its Euclidean distance in input

space from the query point xq. A popular choice of the function K is the Gaussian kernel:

wi = exp
{

−0.5 (xi − xq)
T

H (xi − xq)
}

(where H is a positive semi-definite diagonal matrix with h on its diagonal) since the

weight of a data sample is then lower when its input point is further away from the query

input xq. That is to say, we assume that the further away a training data sample is from

the query point in input space, the more we downweight that training sample. However,

other kernels may be used as well (Atkeson et al. 1997).

The bandwidth h ∈ <d×1 of the kernel represents how wide the weighting kernel is and

dictates the quality of fit of the local model. h is a form of distance metric, a measure that

determines the size and shape of the weighting kernel and is the size of the local regime

in input space to be linearized. h should be chosen as a function of the local curvature

of f(x) and the data density around xq. If we find the “right” bandwidth as a function

of xq to avoid oversmoothing or overfitting the data, nonlinear function approximation

can be solved accurately and efficiently. Our goal is to find a Bayesian formulation of

determining b and h simultaneously.

As previously mentioned, past work has involved use of cross-validation, involved

statistical hypothesis testing or search to find the optimal distance metric value. However,

these methods may be sensitive to initialization values (for gradient descent), require

manual meta-parameter tuning or be quite computationally involved. In the next section,
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we propose a variational Bayesian algorithm that learns both b and h simultaneously in

an EM-like framework.

5.1.1 Model

For the locally linear model at the query point xq, we can introduce hidden random

variables z (D’Souza et al. 2004) and modify the linear model yi = bTxi so that:

yi =
d∑

m=1

zim + ε

zim = bTmxim + εzm

(5.1)

where εzm and ε are both additive noise terms:

ε ∼ Normal
(
0, σ2

)

εzm ∼ Normal (0, ψzm)

The z variables allow us to derive computationally efficient and numerically robust O(d)

EM-like updates, as we will see later. Note that xim = [xim 1]T and bm = [bm bm0]
T ,

where xim is the mth coefficient of xi, bm is the mth coefficient of b and bm0 is the offset

value.
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Figure 5.1: Graphical model of Bayesian local kernel shaping. Random variables are in
circles, and observed random variables are in shaded double circles.

The prediction at the query point xq is then
∑d

m bTmxim. We assume the following

prior distributions for our model, shown graphically in Figure 5.1:

p(yi|zi) ∼ Normal
(
1T zi, σ

2
)

p(zim|xim) ∼ Normal
(
bTmxim, ψzm

)

p(bm|ψzm) ∼ Normal (0, ψzmΣbm,0)

p(ψzm) ∼ Scaled-Inv-χ2 (nm0, ψzm,0)

(5.2)

where 1 is a vector of 1s, zi ∈ <d×1, zim is the mth coefficient of zi, and Σbm,0 is the

prior covariance matrix of bm and a 2 × 2 diagonal matrix. nm0 and σ2
mN0 are the prior

parameters of the Scaled-inverse-χ2 distribution1. The Scaled-Inverse-χ2 distribution

was used for ψzm since it is the conjugate prior for the variance parameter of a Gaussian

distribution.

1
nm0 is the number of degrees of freedom parameter and σ

2
mN0 is the scale parameter
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In contrast to classical treatments of Bayesian weighted regression (Gelman et al.

2000) where the weights enter as a heteroscedastic correction on the noise variance of

each data sample, we associate a scalar indicator-like weight, wi ∈ {0, 1}, with

each sample {xi, yi} in D. The sample is fully included in the local model if wi = 1 and

excluded if wi = 0. We define the weight wi to be:

wi =
d∏

m=1

wim (5.3)

where wim is the weight component in the mth input dimension. While previous meth-

ods model the weighting kernel K as some explicit function, we treat the weights wim

probabilistically and model them as Bernoulli-distributed random variables:

p(wim) ∼ Bernoulli(qim) (5.4)

choosing a symmetric bell-shaped function for the parameter qim:

qim =
1

1 + (xim − xqm)2rhm
(5.5)

where xqm is themth coefficient of xq, hm is themth coefficient of h, and r > 0 is a positive

integer. The function for qim has the property that data samples are downweighted more

if they are further located from the query point in input space. (xim − xqm) is taken to

the power 2r in order to ensure that the resulting expression is positive. Adjusting r

affects how long the tails of the kernel are, as Figure 5.2 shows. For smaller values of
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Figure 5.2: Graphs of the function qi = 1
1+(xi−xq)2rh

for 1-dimensional inputs xi, where

xq = 0 and h = 1, over different r values.

r, the weighting kernel takes on a shape with a narrower peak, but longer tails. We use

r = 2 for all our experiments to avoid long tails.

We model wim with a Bernoulli distribution since the weights w need to be positive

and between 0 and 1. qim is then the parameter of the Bernoulli distribution and is, by

definition, also restricted to values between 0 and 1.

As pointed out in Atkeson et al. (1997), the particular mathematical formulation of a

weighting kernel is largely computationally irrelevant for locally weighted learning. Our

choice of weighting kernel (i.e., choice of function for qim) was dominated by the desire

to obtain analytically tractable learning updates (see the next section for more details).

We place a Gamma prior over the bandwidth hm:

p(hm) ∼ Gamma (ahm0, bhm0) (5.6)
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where ahm0 and bhm0 are parameters of the Gamma distribution, to ensure that a positive

weighting kernel width.

5.1.2 Inference

We can treat the entire regression problem as an EM learning problem (Dempster et al.

1977, Ghahramani & Beal 2000). Defining X to be a matrix with input vectors xi arranged

in its rows and y as a vector with coefficients yi, we would like to maximize the log

likelihood log p(y|X) for generating the observed data. We can maximize this incomplete

log likelihood by maximizing the expected value of the complete log likelihood, shown

below:

y,Z,b,w,h, σ2, ψz|X) =
N∏

i=1

p(yi, zi,b, wi,h, σ
2, ψz|xi)

In our model, each data sample i has an indicator-like scalar weight wi associated with

it, allowing us to express the complete log likelihood L, in a similar fashion to mixture

models, as:

L = log

[
N∏

i=1

[

[
p(yi|zi, σ

2)p(zi|xi,b, ψz)
]wi

d∏

m=1

p(wim)

]
d∏

m=1

p(bm|ψzm)p(ψzm)p(hm)p(σ2)

]

which can be expanded to:

L =
N∑

i=1

wi log p(yi|zi, σ
2) +

N∑

i=1

wi log p(zi, |xi,b, ψz) +
N∑

i=1

d∑

m=1

log p(wim)

+
d∑

m=1

log p(bm|ψzm) +
d∑

m=1

log p(ψzm) +
d∑

m=1

log p(hm) + log p(σ2)

(5.7)
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If we expand the term
∑N

i=1

∑d
m=1 log p(wim) in Eq. (5.7) above, we get:

N∑

i=1

d∑

m=1

log p(wim = 1)wim +
N∑

i=1

d∑

m=1

log p(wim = 0)(1−wim)

=
N∑

i=1

d∑

m=1

[

wim log
1

1 + (xim − xqm)2r hm
+ (1 − wim) log

(

1 −
1

1 + (xim − xqm)2r hm

)]

=
N∑

i=1

d∑

m=1

wim log
1

1 + (xim − xqm)2r hm
+

N∑

i=1

d∑

m=1

(1 − wim) log
(xim − xqm)2r hm

1 + (xim − xqm)2r hm

=
N∑

i=1

d∑

m=1

(1 − wim) log (xim − xqm)2r hm −
N∑

i=1

d∑

m=1

log
(

1 + (xim − xqm)2r hm

)

(5.8)

Given that the prior on hm is a Gamma distribution, there is a problematic log term,

− log
(

1 + (xim − xqm)2r hm

)

, in the expression above that prevents us from deriving

an analytically tractable expression for the posterior of hm. To address this, we use a

variational approach on concave/convex functions suggested by Jaakkola & Jordan (2000)

in order to produce analytically tractable expressions. We can find a lower bound to the

term − log
(

1 + (xim − xqm)2r hm
)

so that:

− log
(

1 + (xim − xqm)2r hm

)

≥ −λim (xim − xqm)2r hm + consthm
(5.9)

where λim is a variational parameter to be optimized in an M-step of our final EM-like

algorithm and can be done so by optimizing with respect to the expected complete log

likelihood:

λim =
1

1 + (xim − xqm)2r 〈hm〉
(5.10)

Please refer to Appendix D.1 for derivations of the lower bound in Eq. (5.9).
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Our choice of weighting kernel qim allows us to find a lower bound to L in this manner.

We explored the use of other weighting kernels (such as a quadratic negative exponential,

among others). However, we encountered difficulties in finding a lower bound to the

problematic terms in log p(wim) so that analytically tractable inference for the posterior

of hm could be done.

The resulting lower bound to L, L̂, is then:

L ≥ L̂ = −
N∑

i=1

wi log 2πσ2 −
1

2σ2

N∑

i=1

wi
(
yi − 1T zi

)2
−

1

2

N∑

i=1

wi

d∑

m=1

log 2πψzm

−
N∑

i=1

wi

d∑

m=1

1

2ψzm

(
zim − bTmxim

)2
+

N∑

i=1

d∑

m=1

(1 − wim) log (xim − xqm)2r hm

−
N∑

i=1

d∑

m=1

λim (xim − xqm)2r hm −
1

2

d∑

m=1

log |Σbm,0| −
1

2

d∑

m=1

logψzm

−
d∑

m=1

1

2ψzm
bTmΣ−1

bm,0
bm −

d∑

m=1

(nm0

2
+ 1
)

logψzm −
d∑

m=1

nm0ψzmN0

2ψzm

+
d∑

m=1

(ahm0 − 1) log hm −
d∑

m=1

bhm0hm + consty,Z,b,w,h,σ2,ψz
(5.11)

We would like to maximize the lower bound to the log likelihood in Eq. (5.11) and

find the parameter values that correspond to this. The expectation of this complete

data likelihood L̂ should be taken with respect to the true posterior distribution of all

hidden variables Q(b, ψz, z,h). Since this is an analytically tractable expression, a lower

bound can be formulated using a variational factorial approximation of the true posterior,

e.g., (Ghahramani & Beal 2000), as follows:

Q(b, ψz,h, z) = Q(b, ψz)Q(h)Q(z).
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All resulting posterior distributions over hidden variables become analytically tractable.

Assuming that θ = {b, ψz,h}, the posterior of wim, p(wim = 1|yi, zi,xi,θ, wi,k 6=m) can

be inferred using Bayes’ rule:

p(yi, zi|xi,θ, wi,k 6=m, wim = 1)
Qd

t=1,t 6=m〈wit〉p(wim = 1)

p(yi, zi|xi,θ, wi,k 6=m, wim = 1)
Qd

t=1,t 6=m〈wit〉p(wim = 1) + p(wim = 0)
(5.12)

where wi,k 6=m denotes the set of weights {wik}
d
k=1,k 6=m. For the dimension m, we account

for the effect of weights in the other d−1 dimensions. This is a result of wi being defined

as the product of weights in all dimensions, as seen in Eq. (5.3). The posterior mean of

wim is then 〈p(wim = 1|yi, zi,xi,θ, wi,k 6=m)〉, and:

〈wi〉 =
d∏

m=1

〈wim〉

where 〈.〉 denotes the expectation operator.

The final posterior EM update equations (along with posterior updates for wim) are

listed in below:

E-step:

Σbm
=

(

Σ−1
bm,0

+
N∑

i=1

〈wi〉ximxTim

)−1

(5.13)

〈bm〉 = Σbm

(
N∑

i=1

〈wi〉 〈zim〉xim

)

(5.14)

Σzi|yi,xi
=

ΨzN

〈wi〉
−

1

si

(
ΨzN

〈wi〉
11T

ΨzN

〈wi〉

)

(5.15)

〈zi〉 =
ΨzN1

si 〈wi〉
+

(

Id,d −
ΨzN11T

si 〈wi〉

)

bxi (5.16)
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ψzmN =







∑N
i=1 〈wi〉

(

〈zim〉 − 〈bm〉
T

xim

)2
+
∑N

i=1 〈wi〉Σzi|yi,xi

+nm0ψzmN0 + 〈bm〉
T

Σ−1
bm,0

〈bm〉







nm0 +
∑N

i=1 〈wi〉
(5.17)

〈wim〉 =
qimA

Qd
k=1,k 6=m〈wik〉

i

qimA
Qd

k=1,k 6=m〈wik〉

i + 1 − qim

(5.18)

〈hm〉 =
ahm0 +N −

∑N
i=1 〈wim〉

bhm0 +
∑N

i=1 λim (xim − xqm)2r
(5.19)

M-step:

σ2 =
1

∑N
i=1 〈wi〉

N∑

i=1

〈

wi
(
yi − 1T zi

)2
〉

(5.20)

λim =
1

1 + (xim − xqm)2r hm
(5.21)

where:

〈wi〉 =
d∏

m=1

〈wim〉

si = σ2 + 1T
ΨzN

〈wi〉
1

qim = λim =
1

1 + (xim − xqm)2r 〈hm〉

Ai = Normal
(
yi;1

T 〈zi〉 , σ
2
)

d∏

m=1

Normal
(

zim; 〈bm〉
T

xim, ψzm

)

and Id,d is a d × d identity matrix, bxi is a d by 1 vector with coefficients 〈bm〉
T

xim,

ΨzN is a diagonal matrix with ψzN on its diagonal, Note that to avoid division by zero,

〈wi〉 needs to be capped to some small non-zero value. Please refer to Appendix D.2 for

derivations of the EM update equations listed above.
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Figure 5.3: Effect of outliers (in black circles) on local kernel shaping

Closer examination of Eq. (5.14)—the expression for 〈bm〉—shows that it is a standard

Bayesian weighted regression update (Gelman et al. 2000), i.e., a data sample i with lower

weight wi will be downweighted in the regression. Since the weights are influenced by the

residual error at each data point, as Eq. (5.18) shows, an outlier will be downweighted

appropriately and eliminated from the local model. Figure 5.3 shows how local kernel

shaping is able to ignore outliers that a classical GP fits. Note that the posterior mean

of hm is a function of the number of samples that are excluded from the local model and

the weighted distance that each sample is from the query point (i.e., the denominator of

hm).

Initialization of Priors: A few remarks should be made regarding the initialization of

priors used in Eqs. (5.13) to (5.21). Σbm,0 can be set to 106I to reflect a large uncertainty

associated with the prior distribution of b. The initial noise variance, ψzm,0, should be

set to the best guess on the noise variance. To adjust the strength of this prior, nm0 can
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be set to the number of samples one believes to have seen with noise variance ψzm,0—

the more points, the strong the prior. For instance, nm0 could be set to a fraction of the

number of samples in the training set. Finally, the initial h of the weighting kernel should

be set so that the kernel is broad and wide. We use values of ahm0 = bhm0 = 10−6 so

that hm0 = 1 with high uncertainty. In a similar fashion to outlier detection in Section 4,

some sort of initial belief about the noise level is needed to distinguish between noise and

structure in the training data. Aside from the initial prior on ψzm, we used the same

priors for all data sets in our evaluations.

5.1.3 Computational Complexity

For one local model, the EM update equations have a computational complexity of O(Nd)

per EM iteration, where d is the number input dimensions and N is the size of the training

set. This efficiency arises from the introduction of the hidden random variables zi, which

allows 〈zi〉 and Σzi|yi,xi
to be computed in O(d) and avoids a d×d matrix inversion which

would typically require O(d3).

Nonstationary GP methods, e.g., (Paciorek & Schervish 2004), require O(N3) +

O(N2) for training and prediction, while other more efficient stationary GP methods,

e.g., (Snelson & Ghahramani 2006b), have O(M2N) + O(M2) training and prediction

costs (where M << N is the number of pseudoinputs used in Snelson & Ghahramani

(2006b)).

Our algorithm requires O(NdIEM ), where IEM is the number of EM iterations (with

a maximal cap of 1000 iterations used). The algorithm also does not require any MCMC
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sampling as in Rasmussen & Ghahramani (2002) and Meeds & Osindero (2005), making

it more appealing to real-time applications.

5.2 Extension to Gaussian Processes

We can apply the algorithm in Section 5.1 not only to locally weighted learning with

linear models, but also to derive a non-stationary GP method. A GP is defined by a

mean and and a covariance function, where the covariance function K captures depen-

dencies between any two points as a function of the corresponding inputs, i.e., k (xi,xj) =

cov
(

f(xi), f(x′
j)
)

, where i, j = 1, .., N . Standard GP models use a stationary covariance

function, where the covariance between any two points in the training data is a function

of the distances |xi − xj |, not on their locations. Stationary GPs perform suboptimally

for functions that have different properties in various parts of the input space (e.g., dis-

continuous functions) where the stationary assumption fails to hold.

Various methods have been proposed to specify non-stationary GPs. These include

defining a non-stationary Matérn covariance function (Paciorek & Schervish 2004), adopt-

ing a mixture of local experts approach (Tresp 2000, Rasmussen & Ghahramani 2002, Shi,

Murray-Smith & Titterington 2005, Meeds & Osindero 2005) to use independent GPs to

cover data in different regions of the input space, and using multidimensional scaling to

map a non-stationary spatial GP into a latent space (Schmidt & O’Hagan 2003).

Given the data set D drawn from the function y = f(x) + ε, as previously introduced

in Section 5.1.1, we propose an approach to specify a non-stationary covariance function.
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Assuming the use of a quadratic negative exponential covariance function, the covariance

function of a stationary GP is as follows:

k(xi,xj) = v2
1 exp(−0.5

d∑

m=1

hm(xim − x′jm)2) + v0

where the (d+2) hyperparameters {h1, h2, ..., hd, v0, v1} are optimized. In a non-stationary

GP, the covariance function could then take the following form (Gibbs 1997):

k(xi,xj) = v2
1

(

2
√
himhjm

him + hjm

)1/2

exp

(

−

d∑

m=1

(xim − xjm)2

2(him + hjm)

)

+ v0 (5.22)

where him is the bandwidth of the local model centered at xim and hjm is the bandwidth

of the local model centered at xjm. The hyperparameters to be optimized now consist of

only v0 and v1.

We learn first the values of {him}
d
m=1 for all training data samples i = 1, ..., N , using

our proposed local kernel shaping algorithm and then optimizing the hyperparameters v0

and v1. To make a prediction for a test sample xq, we learn also the values of {hqm}
d
m=1,

i.e., the bandwidth of the local model centered at xq. Importantly, since the covariance

function of the GP is derived from locally constant models, we learn with locally con-

stant, instead of locally linear, polynomials. We use r = 1 for the weighting kernel in

order keep the degree of nonlinearity consistent with that in the covariance function (i.e.,

quadratic). Even though the weighting kernel used in the local kernel shaping algorithm

is not a quadratic negative exponential, it has a similar bell shape, but with a flatter

top and shorter tails. Because of this, our proposed method is an approximated form of
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a non-stationary GP. Nonetheless, the augmented GP is able to capture non-stationary

properties of the function f without needing MCMC sampling, unlike previously proposed

non-stationary GP methods (Rasmussen & Ghahramani 2002, Meeds & Osindero 2005).

5.3 Experimental Results

We evaluate our Bayesian local kernel shaping algorithm on synthetic data sets, in order

to establish that its performance is competitive to other state-of-the-art techniques for

nonlinear regression such as locally weighted projection regression (LWPR) and Gaussian

process regression (GPR). We also demonstrate the effectiveness of our algorithm on a

real robotic data set, learning an inverse kinematics model for a robot arm.

5.3.1 Synthetic Data

First, we show our local kernel shaping algorithm’s bandwidth adaptation abilities on

several synthetic data sets, comparing it to a stationary GP and our proposed augmented

non-stationary GP.

One-dimensional synthetic data: For the ease of visualization, we consider the fol-

lowing one-dimensional functions, similar to those in Paciorek & Schervish (2004):

(i) a function with a discontinuity

(ii) a spatially inhomogeneous function

(iii) a straight line
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The data set for function (i) consists of 250 training samples, 201 test inputs (evenly

spaced across the input space) and output noise with σ2 = 0.3025. The data set for

function ii) consists of 250 training samples, 101 test inputs and an output signal-to-

noise ratio (SNR) of 10. The data set for function iii) has 50 training samples, 21 test

inputs and an output SNR of 100.

Figures 5.4 to 5.6 show the predicted outputs of a stationary GP, augmented non-

stationary GP and the local kernel shaping algorithm for data sets (i)-(iii). The local

kernel shaping algorithm smoothes over regions where a stationary GP overfits and yet,

it still manages to capture regions of highly varying curvature, as seen in Figures 5.4(a)

and 5.6(a). It correctly adjusts the bandwidths h with the curvature of the function.

When the data looks linear, the algorithm opens up the weighting kernel so that all data

samples are considered, as Figure 5.6(b) shows. Our proposed augmented non-stationary

GP also can handle the non-stationary nature of the data sets as well, and its performance

is quantified in Table 5.1. Returning to our motivation to use these algorithms to obtain

linearizations for learning control, it is important to realize that the high variations from

fitting noise, as shown by the stationary GP in Figures 5.4(a) and 5.5(a), are detrimental

for learning algorithms, as the slope (or tangent hyperplane, for high-dimensional data)

would be wrong.

Table 5.1 reports the normalized mean squared prediction error (nMSE) values for

function (i) and function (ii) data sets, averaged over 20 random data sets. We also

performed Gibbs sampling Adaptive Rejection Sampling to sample from the conditional

distribution of h.
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Figure 5.4: Observed vs. predicted output made by stationary GP, augmented GP and
Bayesian local kernel shaping for function (i). Figure 5.4(b) shows the bandwidths learnt
by local kernel shaping and the corresponding weighting kernels (in dotted black lines)
for various input query points (shown in red circles).
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Figure 5.5: Observed vs. predicted output made by stationary GP, augmented GP and
Bayesian local kernel shaping for function (ii). Figure 5.5(b) shows the bandwidths learnt
by local kernel shaping and the corresponding weighting kernels (in dotted black lines)
for various input query points (shown in red circles).
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Figure 5.6: Observed vs. predicted output made by stationary GP, augmented GP and
Bayesian local kernel shaping for function (iii). Figure 5.6(b) shows the bandwidths learnt
by local kernel shaping and the corresponding weighting kernels (in dotted black lines)
for various input query points (shown in red circles).
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Table 5.1: Average normalized mean squared prediction error values, for a stationary GP
model, our augmented non-stationary GP, local kernel shaping. Results, averaged over
20 random data sets, are shown for functions (i) and (ii).

Method Function (i) Function (ii)

Stationary GP 0.1251 ± 0.013 0.0230 ± 0.0047
Augmented non-stationary GP 0.0110 ± 0.0078 0.0212 ± 0.0067

Local Kernel Shaping 0.0092 ± 0.0068 0.0217 ± 0.0058

2-dimensional synthetic data: We also evaluated Bayesian local kernel shaping on

500 noisy training data samples, drawn from the 2-dimensional function (CROSS 2D),

generated from:

y = max
{
exp(−10x2

1), exp(−50x2
2), 1.25 exp(−5(x2

1 + x2
2))
}

as previously examined in Schaal et al. (1998) and Vijayakumar et al. (2005). Mean-zero

noise with a variance of 0.01 was added to the outputs. Figure 5.7(a) shows the target

function, evaluated over a noiseless test input, resulting in 1681 data points on a 41× 41

grid in the 2 × 2 square in input space. Figure 5.7(b) shows the predicted outputs for

Bayesian local kernel shaping, and Figure 5.8 depicts the learnt distance metric values

h over a subset of the test data points scattered over the 41 × 41 grid (shown as red

circles). As before, we see that the width of the weighting kernel adjusts according to the

curvature of the function.

Table 5.2 compares the performance of Bayesian local kernel shaping to GPR and

LWPR, averaged over 10 randomly chosen training data sets. Performance was quantified

in terms of normalized mean squared prediction error (nMSE) value on the noiseless test

sets.
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Figure 5.7: a) nonlinear 2-dimensional CROSS target function to be approximated; b)
approximated/predicted function produced by Bayesian local kernel shaping
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Figure 5.8: Learnt weighting kernels in input space for 2-dimensional CROSS target
function in Figure 5.7. Small red circles indicate the test input points and centers of the
weighting kernels. Training data has an output noise has a variance of 0.01.

Table 5.2: Average normalized mean squared error (nMSE) comparisons between Gaus-
sian Process regression (GPR), LWPR and Bayesian local kernel shaping for the nonlinear
2-d CROSS function. Results shown are averaged over 10 trials and the training data set
has N = 500 samples.

Algorithm nMSE std-dev

GPR 0.01991 0.00314
LWPR 0.02556 0.00416

Local Kernel Shaping 0.02609 0.00532
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Motorcycle data set: Figures 5.9 and 5.10 show the results of the local kernel shaping

algorithm and the proposed augmented non-stationary GP on the “real-world” motorcycle

data set (Silverman 1985) consisting of 133 samples (with 80 equally spaced input query

points used for prediction). We also show results from two previously proposed MCMC-

based non-stationary GP methods: an infinite mixture of GP experts from Rasmussen

& Ghahramani (2002), shown in Figure 5.11, and an alternate infinite mixture of GP

experts (Meeds & Osindero 2005), shown in Figure 5.12. We can see that the augmented

non-stationary GP and the local kernel shaping algorithm both capture the leftmost

flatter region of the function, as well as some of the more nonlinear and noisier regions

after 30msec.
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Figure 5.9: Predicted results from Bayesian local kernel shaping on the motorcycle impact
data set from Silverman (1985),
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Figure 5.10: Predicted results from our augmented GP method on the motorcycle impact
data set from Silverman (1985),
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Figure 5.11: Predicted results from infinite mixture of GP experts (iMGPE) on the
motorcycle impact data set from Silverman (1985), Graph is taken from Rasmussen &
Ghahramani (2002).
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Figure 5.12: Predicted results from alternate infinite mixture of GP experts (AiMoGPE)
on the motorcycle impact data set from Silverman (1985), Graph is taken from Meeds &
Osindero (2005).

Figure 5.13: SensAble Phantom haptic robotic arm
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5.3.2 Robot Data

Next, we move on to an example application: learning an inverse kinematics model for

a 3 degree-of-freedom (DOF) haptic robot arm (manufactured by SensAble, shown in

Figure 5.13) in order to control the end-effector along a desired trajectory. This will allow

us to verify that the kernel shaping algorithm can successfully deal with a large, noisy

real-world data set with outliers and non-stationary properties—typical characteristics of

most control learning problems.

We collected 60, 000 data samples from the arm while it performed random sinusoidal

movements within a constrained box volume of Cartesian space. Each sample consists

of the arm’s joint angles q, joint velocities q̇, end-effector position in Cartesian space x,

and end-effector velocities ẋ. From this data, we first learn a forward kinematics model:

ẋ = J(q)q̇ (5.23)

where J(q) is the Jacobian matrix. The transformation from q̇ to ẋ can be assumed to

be locally linear at a particular configuration q of the robot arm. We learn the forward

model using kernel shaping, building a local model around each training point only if

that point is not already sufficiently covered by an existing local model (e.g., having an

activation weight of less than 0.2). Using insights into robot geometry, we localize the

models only with respect to q while the regression of each model is trained only on a

mapping from q̇ to ẋ—these geometric insights are easily incorporated as priors in the

Bayesian model. This procedure resulted in 56 models being built to cover the entire

space of training data.
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Figure 5.14: Desired versus actual trajectories for SensAble Phantom robot arm
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We artificially introduce a redundancy in our inverse kinematics problem on the 3-

DOF arm by specifying the desired trajectory (x, ẋ) only in terms of x, z positions and

velocities, i.e., the movement is supposed to be in a vertical plane in front of the robot.

Analytically, the inverse kinematics equation is:

q̇ = J#(q)ẋ − α(I − J#J)
∂g

∂q
(5.24)

where J#(q) is the pseudo-inverse of the Jacobian. The second term is an optimal solution

to the redundancy problem, specified here by a cost function g in terms of joint angles q.

To learn a model for J#, we can reuse the local regions of q from the forward model,

where J# is also locally linear. The redundancy issue can be solved by applying an

additional weight to each data point according to a reward function (Peters & Schaal

2008). In our case, the task is specified in terms of {ẋ, ż}, so we define a reward based on

a desired y coordinate, ydes, that we would like to enforce as a soft constraint. Our reward

function is g = e−
1
2
h(k(ydes−y)−ẏ)

2
, where k is a gain and h specifies the steepness of the

reward. This ensures that the learnt inverse model chooses a solution which produces a

ẏ that pushes the y coordinate toward ydes. We invert each forward local model using

a weighted linear regression, where each data point is weighted by the weight from the

forward model and additionally weighted by the reward.

We test the performance of this inverse model (Learnt IK) in a figure-eight tracking

task as shown in Figure 5.14. As seen, the learnt model performs as well as the analytical

inverse kinematics solution (IK), with root mean squared tracking errors in positions and
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velocities very close to that of the analytical solution. This demonstrates that kernel

shaping is an effective learning algorithm for use in robot control learning applications.

Applying any arbitrary nonlinear regression method (such as a GP) to the inverse

kinematics problem would, in fact, lead to unpredictably bad performance. The inverse

kinematics problem is a one-to-many mapping and requires careful design of a learning

problem to avoid problems with non-convex solution spaces (Jordan & Rumelhart 1991).

Our suggested method of learning linearizations with a forward mapping (which is a

proper function), followed by learning an inverse mapping within the local region of

the forward mapping, is one of the few clean approaches to the problem. Instead of

using locally linear methods, one could also use density-based estimation techniques like

mixture models (Ghahramani 1994). However, these methods must select the correct

mode in order to arrive at a valid solution, and this final step may be computationally

intensive or involve heuristics. For these reasons, applying a MCMC-type approach or

GP-based method to the inverse kinematics problem was omitted as a comparison.

5.4 Discussion

We introduced a Bayesian formulation of spatially local adaptive kernels for locally

weighted regression. The local kernel shaping algorithm is computationally efficient,

making it suitable for large data sets, and can handle non-stationary functions where the

data density, curvature and amount of noise in the data vary spatially. The algorithm

can also be integrated into nonlinear algorithms such as GPs, offering an approach that

does not require any sampling and making it more appealing for real-time problems.
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We show that our local kernel shaping method is particularly useful for learning control,

demonstrating results on an inverse kinematics problem, and envision extensions to more

complex problems with redundancy, e.g., learning inverse dynamics models of complete

humanoid robots.

Note that our algorithm requires only one prior be set by the user, i.e., the prior

on the output noise. All other biases are initialized the same for all data sets and kept

uninformative. In general, the bias on the output noise is needed in order to distinguish

structure from noise in data—which is also the case for outlier detection. In our algorithm,

the noise bias needs to be specified in a very coarse way.

In its current form, our Bayesian kernel shaping algorithm is built for high-dimensional

inputs due to its low computational complexity: it scales linearly with the number of

input dimensions. However, numerical problems may arise in case of redundant and

irrelevant input dimensions. Future work will address this issue through the use of an

automatic relevant determination feature. Note that all comments about the functionality

of local function approximation in high-dimensional spaces are the same as those made

in (Vijayakumar et al. 2005). Other future extensions include an online implementation

of the local kernel shaping algorithm.
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Chapter 6

Conclusion

In this dissertation, we presented a series of Bayesian algorithms for the development of

autonomous learning systems. The algorithms are black-box-like in property, requiring

minimal tuning of parameters by the user. A Bayesian approach allows the user to express

domain-specific knowledge intuitively. Instead of having to search for specific values or

range of values to set parameters to, the user need only to specify a priori probability

distribution over parameters.

6.1 Summary of Dissertation Contributions

Algorithmic contributions:

• Reformulation of linear regression as a sparse, numerically robust, computationally

efficient (for an iterative method), automatic and truly black-box method

• Accurate model identification (of a generative model) with input and output noise

• Automatic outlier detection

• Nonlinear regression for heteroscedastic and non-stationary functions
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Contributions to application domains:

• Modeling of data for brain-machine interfaces

• Accurate parameter identification for rigid body dynamics

• Robust state estimation for tracking

• Learning nonlinear internal models for robotics

6.2 Summary of Chapters

6.2.1 Chapter 2

Chapter 2 addresses how linear regression in high dimensions can be performed, espe-

cially where the input data has a large number of input dimensions—many of which are

redundant or irrelevant. These kinds of data are typically encountered in the fields of

neuroscience and brain-machine interfaces.

Variational Bayesian least squares, the algorithm introduced in the chapter, is com-

putationally efficient, requiring O(d) updates per EM iteration—where d is the input

dimensionality, is guaranteed to converge to the global solution and has no parameters

to be tuned. The initial prior distribution over the precision variables α can be set to be

wide and uninformative. The hyperparameter values for the initial prior of α need never

be changed from data set to data set, making VBLS autonomous and “black-box”-like.

Even though VBLS is an iterative statistical method, it can be embedded into other

iterative methods to make them more computationally efficient. Its iterative nature also

makes it suitable for real-time learning scenarios, where time constraints dictate that an
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approximately accurate solution is better than an extremely accurate one that takes too

long to compute.

6.2.2 Chapter 3

Chapter 3 considers high-dimensional scenarios introduced in Chapter 2, but takes into

account the more realistic scenario where observed, sensory data (in particular, observed

input data) is contaminated with noise. A novel full Bayesian treatment of the linear

system identification is introduced in the chapter. The algorithm is robust to high-

dimensional, ill-conditioned data with noisy input and output data, remains computa-

tionally efficient (again, O(d) per EM iteration) and has no parameters that need to be

tuned.

The algorithm is, however, iterative, but then again, so is probabilistic factor analysis

for regression. As with VBLS, the iterative nature of the algorithm makes it suitable

for real-time learning scenarios and also for incorporation into other iterative methods to

de-noise input data.

The algorithm was applied to the problem of estimating parameters in rigid body

dynamics—an estimation problem that is linear in the unknown parameters. Physical

constraints of the parameters (such as positive mass, a positive definite inertial matrix, the

parallel axis theorem, etc.) had to be satisfied. As a result, we introduced an additional

post-processing step after the algorithm is executed in order to ensure resulting parameter

estimates satisfy physical constraints. The additional post-processing step projects the

inferred solution onto the feasible space of possible solutions.
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The chapter focuses on the problem of learning for system identification (for the

purpose of finding the true parameters of a system), versus learning for prediction. Good

prediction is often possible without modeling all components of the generative system,

while parameter estimation comes useful when the identified model is used in other ways

that are different than in the training scenario. For example, in the application domain

of robotics, the analytical inverse of the identified model is often needed in model-based

control.

6.2.3 Chapter 4

Chapter 4 examines how outliers in noisy, sensory data can be detected and removed,

especially in real-time. In particular, we propose an automatic approach to outlier detec-

tion and removal that can be incorporated into the Kalman filter, as well as other more

complex filters.

The Bayesian weighted regression framework introduced in the chapter is easy to use.

It does not require any parameter tuning beyond the weight prior (which is, in fact, an

outlier prior, needed in order to distinguish outliers from data structure), interference

from the user, heuristics or sampling. In this framework, each data sample has a scalar

weight associated with it and the optimal value of the weights are learnt.

6.2.4 Chapter 5

Finally, chapter 5 moves on to the nonlinear high-dimensional regression problem. We

introduce a Bayesian kernel shaping algorithm that automatically learns the bandwidth

of a local model. The Bayesian kernel shaping algorithm is computationally efficient and
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can handle non-stationary functions where the data density, curvature and amount of

noise in the data vary spatially. The algorithm can be leveraged in not only in locally

methods, such as locally weighted regression, but also in global methods that are linear in

the parameters, such as Gaussian process regression, in order to capture non-stationary

properties in data.

The algorithm requires that only one prior be set by the user, i.e., the output noise

prior. Similar to outlier detection, this noise prior is needed to distinguish noise from

structure in the data. The noise bias in Bayesian kernel shaping needs to be specified

coarsely.

6.3 Opportunities for Future Research

The next step towards realizing autonomous systems is to bring the Bayesian kernel

shaping algorithm developed in Chapter 5, as well as the other algorithms, to real-time

learning scenarios. The version of Bayesian kernel shaping presented in this thesis needs

also be modified to handle data with many redundant and irrelevant input features. A

potential extension is to apply the estimation of a local model’s bandwidth from a spatial

to a temporal setting—specifically, to the estimation of forgetting rates in incremental

learning (e.g., as in Recursive Least squares). Estimating the optimal value of forgetting

rates is equivalent to determining the window of previously observed samples to consider

and average over when trying to make predictions.
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A related, interesting research direction is the problem of online model selection and

how it can be done in an autonomous, black-box-like manner. The order in which sam-

ples are observed will affect the resulting model that is selected. Nevertheless, if one

could determine whether a sample would be discarded or taken into account once it is ob-

served, then the resulting mechanism may be effective alternative solution to bandwidth

adaptation.
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Appendix A

Variational Bayesian Least Squares

A.1 Derivation of Variational Bayesian Least Squares

Consider the complete log likelihood of the model in Section 2.2.2, i.e., Eq. (2.15). We
know that maximizing the lower bound implies that the functional F (Q,φ) over the space
of probability distributions Q(vH), where vH are unobserved random variables. The
calculus of variations, e.g., (Rustagi 1976), allows for the derivation of general updates
for distributions that are individually factored. For the case where we assume individually
factored distributions of the random variables:

Q(vH) = Q1(v1)Q2(v2) · · ·Qn(vn),

the solution for the individual posterior distributions that maximizes the function F (Q,φ)
under the factorization assumption is:

Qj(vj) =
exp 〈log p(xD,vH ;φ)〉Qk 6=j

∫
exp 〈log p(xD,vH ;φ)〉Qk 6=j

dvj

or equivalently:

logQj(vj) = 〈log p(xD,vH ;φ)〉Qk 6=j
+ constvj

(A.1)

where xD is the observed data, 〈·〉Qk 6=j
denotes the expectation taken with respect to all

distributions Qk except for Qj , and j = 1, 2, ..., n.
For the scenario where we do not assume a full factorized assumption of vH and

instead, assume, for example:

Q(vH) = Q12(v1,v2)Q3(v3) · · ·Qn(vn)

we would need to infer the joint distribution of Q12(v1,v2). One approach of solving this
is to assume that the joint distribution factorizes into Q1(v1|v2)Q2(v2)Q3(v3) · · ·Qn(vn).
The resulting posterior distribution for Q1(v1|v2) can be derived using Eq. (A.1) above.
However, when maximizing the functional with respect to Q2, we would need to include
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terms that have a dependency on v2 in the numerator (or, equivalently, we could use
Eq. (A.1) but then marginalize out v1):

Q2(v2) ∝ exp

(

〈log p(xD,vH ;φ)〉Qk 6=2
−

∫

Q1(v1|v2) logQ1(v1|v2)dv1

)

or equivalently:

logQ2(v2) = 〈log p(xD,vH ;φ)〉Qk 6=2
+ Entropy {Q1(v1|v2)} + const (A.2)

With the above in mind, we can derive the final EM updates for the model in Sec-
tion 2.2.2, assuming that:

Q(b,α,Z) = Q(b,α)Q(Z)

= Q(b|α)Q(α)Q(Z)

We can then infer the posterior distributions analytically:

• For Q(b,α):

logQ(b,α) =
N

2

d∑

m=1

logαm −
d∑

m=1

α

2ψzm

N∑

i=1

〈

(zim − bmxim)2
〉

+
1

2

d∑

m=1

logαm −
1

2

d∑

m=1

αmb
2
m

+
d∑

m=1

(aαm,0 − 1) logαm −
d∑

m=1

bαm,0αm + constα,b

From the above equation, we can deduce:

Q(b,α) = Q(α)
d∏

m=1

Q(bm|αm)

Q(bm|αm) = Normal
(

〈bm|αm〉 , σ
2
bm|αm

)

σ2
bm|αm

=
ψzm
〈αm〉

(
N∑

i=1

x2
im + ψzm

)−1

〈bm|αm〉 =

(
N∑

i=1

x2
im + ψzm

)−1( N∑

i=1

〈zim〉xim

)

(A.3)

Note that the posterior mean of bm|αm in Eq. (A.3) is independent of αm. As a
result, we can re-write the conditional posterior of bm as:

logQ(b,α) = −
1

2

d∑

m=1

[

1

σ2
bm|αm

(bm − 〈bm|αm〉)
2 −

〈bm|αm〉
2

σ2
bm|αm

+
αm
ψzm

N∑

i=1

〈
z2
im

〉

]
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+
d∑

m=1

[(

aαm,0 +
N

2
+

1

2
− 1

)

logαm − bαm,0αm

]

+ constα,b

Taking the exponent of the above expression and integrating out b, we can derive
the following posterior distribution for α:

logQ(α) = −
1

2

d∑

m=1

[

− log 2πσ2
bm|αm

+
αm
ψzm

N∑

i=1

〈
z2
im

〉
−

〈bm|αm〉
2

σ2
bm|αm

]

+

(

aαm,0 +
N + 1

2
− 1

)

logαm − bαm,0 + constα

= −
1

2

d∑

m=1

[

αm
ψzm

N∑

i=1

〈
z2
im

〉
−

〈bm|αm〉
2

σ2
bm|αm

]

+

(

aαm,0 +
N

2
− 1

)

logαm − bαm,0 + constα

From the above expression, we can infer the posterior distribution over α is:

Q(α) =
d∏

m=1

Gamma
(

âαm , b̂αm

)

âαm = aαm,0 +
N

2

b̂αm = bαm,0 +
1

2ψzm







N∑

i=1

〈
z2
im

〉
−

(
N∑

i=1

x2
im + ψzm

)−1( N∑

i=1

〈zim〉xim

)2






• For Q(Z):

logQ(Z) = −
1

2ψy

N∑

i=1

(
yi − 1T zi

)2
−

d∑

m=1

〈

αm
2ψy

N∑

i=1

(zim − bmxim)2
〉

From the above, we can infer the posterior distribution of Z to be:

Q(Z) =
d∏

m=1

Normal (〈zi〉 ,Σz)

Σz =

(
1

ψy
11T + Ψ−1

z 〈A〉

)−1

= Ψz 〈A〉−1 −
Ψz 〈A〉−1

11TΨz 〈A〉−1

ψy + 1TΨz 〈A〉−1
1

〈zi〉 = Σz

(
1

ψy
1yi + Ψ−1

z 〈A〉 〈B|A〉xi

)

=

(

Ψz 〈A〉−1
1

ψy + 1TΨz 〈A〉−1
1

)

yi +

(

〈B|A〉 −
Ψz 〈A〉−1

11T 〈B|A〉

ψy + 1TΨz 〈A〉−1
1

)

xi
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〈zim〉 = 〈bm|αm〉xim +
1

s

ψzm
〈αm〉

(

yi − 〈b|α〉T xi

)

〈
z2
im

〉
=

ψzm
〈αm〉

−
1

s

(
ψzm
〈αm〉

)2

+ 〈zim〉
2

1T 〈zi〉 =
1

2

(
d∑

m=1

ψzm
〈αm〉

)

yi +

(

1 −
1

s

(
d∑

m=1

ψzm
〈αm〉

))

〈b|α〉T xi

1T
〈
ziz

T
i

〉
1 =

d∑

m=1

ψzm
〈αm〉

−
1

s

(
d∑

m=1

ψzm
〈αm〉

)2

+
(
1T 〈zi〉

)2

where Ψ−1 〈A〉 = diag[〈αm〉 /ψzm] and s = ψy + 1TΨz 〈A〉−1
1.

A.2 Pseudocode for Variational Bayesian Least Squares

The pseudocode for VBLS is listed below in Algorithm 1. To know when to stop iterating
through the EM-based algorithm, we should monitor the incomplete log likelihood and
stop when the value appears to have converged. However, since the calculation of the true
posterior distribution Q(α,b,Z) is intractable, we cannot determine the true incomplete
log likelihood. Hence, for the purpose of monitoring the incomplete log likelihood in the
EM algorithm, we monitor a lower bound of the incomplete log likelihood instead. In
the derivation of VBLS, we approximated Q(θ), where θ = {α,b,Z}, as Q(α,b)Q(Z).
Using this variational approximation, we can derive the lower bound to the incomplete
log likelihood, where φ = {ψy, ψz}, to be:

log p(y|X;φ) ≥

∫

Q(θ) log
p(y,θ|X;φ)

Q(θ)
dθ

≥

∫

Q(θ) log p(y,θ|X;φ)dθ −

∫

Q(θ) logQ(θ)dθ

≥ 〈log p(y,θ|X;φ〉Q(θ) −

∫

Q(θ) logQ(θ)dθ (A.4)
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where Eq. (A.4) simplifies to:

log p(y|X;φ) ≥

−
N

2
logψy −

1

2ψy

N∑

i=1

(
y2
i − 2yi1

T 〈zi〉 + 1T
〈
ziz

T
i

〉
1
)

−
N

2

d∑

m=1

logψzm −

d∑

m=1

〈αm〉

2ψzm

N∑

i=1

(〈
z2
im

〉
− 2 〈zim〉 〈bm|αm〉xim +

〈

(bm|αm)2
〉

x2
im

)

−
1

2

d∑

m=1

〈αm〉
〈

(bm|αm)2
〉

−
N − 1

2

d∑

m=1

log b̂αm − âαm

−
1

2
log |Σ−1

z | −
d∑

m=1

log b̂αm +
1

2

d∑

m=1

〈αm〉
(

σ2
bm|αm

+ 1
)

+ consty,φ

(A.5)

We stop iterating when the lower bound to the incomplete log likelihood has converged,
i.e., when a certain likelihood tolerance, t, has been reached. Additionally, note that the
input and output data are assumed to be centered (i.e. have a mean of 0) before we
analyze the data set with VBLS.

0: Initialization: aα,0 = 10−81, bα,0 = 10−81; threshold value for lower bound to the
incomplete log likelihood, t = 10−6

1: Start EM iterations:

2: repeat

3: Perform the E-step: Calculate Eqs. (2.16) to (2.22)
4: Perform the M-step: Calculate Eqs. (2.23) and (2.24)
5: Monitor the lower bound to the incomplete log likelihood, Eq. (A.5), to see if the

likelihood tolerance t has been reached
6: until convergence of Eq. (A.5)

Algorithm 1: Pseudocode for variational Bayesian least squares

A.3 EM Update Equations for Real-time Implementation

The incremental EM update equations for the kth time step, when data sample {xk, yk}
is available, are listed below. Note that ψy

(k−1) denotes the value of ψy at the (k − 1)th
time step, and the same notation is used for all other parameters.

E-step:

Σ(k)
z = Ψ(k−1)

z

〈
A−1

〉(k−1)
−

Ψ
(k−1)
z

〈
A−1

〉(k−1)
11TΨ

(k−1)
z

〈
A−1

〉(k−1)

s(k)
(A.6)

〈z〉(k) =

(

Ψ
(k−1)
z

〈
A−1

〉(k−1)
1

s(k)

)

yk + 〈B〉(k−1)
xk
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−
Ψ

(k−1)
z

〈
A−1

〉(k−1)
11T 〈B〉(k−1)

s(k)
xk (A.7)

(
σ2
bm

)(k)
=

ψ
(k−1)
zm

〈αm〉
(k−1)

(

Σ
(k)
x2 + ψ(k−1)

zm

)−1
(A.8)

〈bm〉
(k) =

(

Σ
(k)
x2

Σ
(k)
x2 + ψ

(k−1)
zm

)

〈bm〉
(k−1) +

ψ
(k−1)
zm

〈αm〉
(k−1)

(

Σ
(k)
yx − Σ

(k)

xxT 〈b〉(k−1)
)

(

Σ
(k)
x2 + ψ

(k−1)
zm

)

s(k)
(A.9)

〈αm〉
(k) =

aαm,0 + 0.5Σ
(k)
N

bαm,0 + 1

2ψ
(k−1)
zm

{

Σ
(k)
N Σz

(k) + Σ
(k)
〈z2〉

−
(

Σ
(k)
x2 + ψ

(k−1)
zm

)−1 (

Σ
(k)
〈z〉x

)2
} (A.10)

M-step:

ψ(k)
y =

1

Σ
(k)
N

(

1 −
Ψ

(k−1)
z

〈
A−1

〉(k−1)
1

s(k)

)2

(

Σ
(k)
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− 2
(

〈b〉(k−1)
)T

Σ(k)
yx +

(

〈b〉(k−1)
)T
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(k)
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)

+ 1TΣ(k)
z 1

(A.11)

ψ(k)
zm =

1

〈αm〉
(k)

(

ψzm
(k−1)

s(k)

)2

(

Σ
(k)
y2

− 2
(

〈b〉(k)
)T

Σ
(k)
yx +

(

〈b〉(k)
)T

Σ
(k)

xxT 〈b〉(k)
)

Σ
(k)
N

+ 〈αm〉
(k) (σ2
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)(k) Σ
(k)
x2

Σ
(k)
N

+ 〈αm〉
(k)

Σ(k)
z (A.12)

where
〈
A−1

〉
= 〈A〉−1 (since A is a diagonal matrix consisting of the diagonal vector α)

and:

s(k) = ψ(k−1)
y + 1TΨ(k−1)

z

〈
A−1

〉(k−1)
1 (A.13)

Additionally, the sufficient statistics used in Eqs. (A.6) to (A.12) are:

Σ
(k)
x2 = Σ

(k−1)
x2 + x2

im Σ
(k)
y2

= Σ
(k−1)
y2

+ y2
i

Σ(k)
yx = Σ(k−1)

yx + yixim Σ
(k)

xxT = Σ
(k−1)

xxT + xix
T
i

Σ
(k)
N = λΣ

(k−1)
N + 1 Σ

(k)
〈z〉x = λΣ

(k−1)
〈z〉x + 〈zim〉xim

Σ
(k)
〈z2〉

= λΣ
(k−1)
〈z2〉

+ 〈zim〉
2

with certain sufficient statistics discounted by λ, as necessary.
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Appendix B

EMG Prediction from Neural Data: Plots

B.1 Construction of Cross-validation Sets

The next four figures, Figures B.1 to B.3, show how cross-validation sets are constructed
for each of the data sets discussed in Section 2.4.2.

In Figure B.1, for each type of force applied by the monkey to the manipulandum,
there are eight possible directions that the manipulandum could have been moved. The
data is from (Sergio & Kalaska 1998) and involves neural firing from the M1 cortex. Each
circle shown in the figure is partitioned into eight equal portions, corresponding to the
eight directional movements and numbered in increasing order (clockwise) starting from
one.

In Figure B.2, there are also eight possible directional movements for each of the three
wrist positions1. The data is from Kakei et al. (1999) and involves neural firing data from
the M1 cortex. As with the previous figure, each circle is partitioned into eight equal
sections, corresponding to the eight directional movements and numbered in increasing
order (clockwise) starting from one.

Figure B.3 shows the construction of cross-validation sets, which are done in a similar
fashion to Figure B.2—except it involves neural firing data from the PM cortex, taken
from the Kakei et al. (2001) data set.

1The three possible wrist positions are i) supinated, ii) pronated and iii) midway in between the two
positions.
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(a) Cross-validation set 1 (b) Cross-validation set 2

(c) Cross-validation set 3 (d) Cross-validation set 4

(e) Cross-validation set 5 (f) Cross-validation set 6

(g) Cross-validation set 7 (h) Cross-validation set 8

Figure B.1: Cross-validation splits for the Sergio & Kalaska (1998) M1 neural data set.
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(a) Cross-validation set 1

(b) Cross-validation set 2

(c) Cross-validation set 3

(d) Cross-validation set 4

(e) Cross-validation set 5

(f) Cross-validation set 6

Figure B.2: Cross-validation splits for the Kakei et al. (1999) M1 neural data set.
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(a) Cross-validation set 1

(b) Cross-validation set 2

(c) Cross-validation set 3

(d) Cross-validation set 4

(e) Cross-validation set 5

(f) Cross-validation set 6

Figure B.3: Cross-validation splits for the Kakei et al. (2001) PM neural data set.
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B.2 Plots of Percentage Matches with Baseline Study

The following three plots, Figures B.4 to B.6, show the percentage matches of neurons
found to be relevant by each algorithm, as compared to those found by the baseline study
(Modelsearch). Percentage matches are shown for each muscle for all three neural data
sets.
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Figure B.4: Percentage of M1 neuron matches found by each algorithm, as compared to
those found by the baseline study (ModelSearch), shown for each muscle in the Sergio &
Kalaska (1998) data set.
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Figure B.5: Percentage of M1 neuron matches found by each algorithm, as compared to
those found by the baseline study (ModelSearch), shown for each muscle in the Kakei
et al. (1999) data set.
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Figure B.6: Percentage of PM neuron matches found by each algorithm, as compared to
those found by the baseline study (ModelSearch), shown for each muscle in the Kakei
et al. (2001) data set.
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B.3 Real-time Analysis for Brain-Machine Interfaces
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(a) r2 values.
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(b) Number of relevant M1 neurons found.

Figure B.7: Coefficient of determination values, r2 = 1 − nMSE, and number of relevant
neurons found by VBLS—both the batch and real-time versions—for the Sergio & Kalaska
(1998) data set. For the real-time, incremental version of VBLS, the number of relevant
neurons found in the last time step is shown.
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B.4 Plots of EMG Traces and Velocities

The following six plots show the EMG traces and (x, y) velocities for various muscles
under certain wrist conditions in the Kakei et al. (1999) and Kakei et al. (2001) data sets.

The first two plots, Figures B.8(a) and B.9(a), show the observed and predicted EMG
traces for the ECRB muscle while in the supinated wrist condition, given firing from M1
and PM neurons, respectively. For each figure, the center plot shows the trajectories in
eight different directions—in the (x, y) plane—taken by the hand. Each of the eight plots
surrounding the center plot shows the EMG traces over time for each hand trajectory,
illustrating:

i) the observed averaged EMG activity

ii) the predicted EMG activity, as obtained by VBLS using data from all conditions

The third and fourth figures, Figures B.10(a) and B.11(a), show the observed and
predicted velocities in the x and y directions, given M1 neural firing, while the hand
is in the supinated wrist condition. These figures are for the (Kakei et al. 1999) M1
neural data set. As with the first two figures, the center plot shows the trajectories
in eight different directions—in the (x, y) plane—taken by the hand. Each of the eight
plots surrounding this center plot shows the velocities (in m/sec) over time for each hand
trajectory, illustrating:

i) the observed velocities

ii) the predicted velocities, as obtained by VBLS using data from all conditions

Finally, the last two figures, Figures B.12(a) and B.13(a), show similar observed and
predicted velocities in the x and y directions to Figures B.10(a) and B.11(a), except
these correspond to neural firing in the PM cortex. The neural data set is from (Kakei
et al. 2001).

189



Observed EMG

Predicted EMG (VBLS−full)
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Figure B.8: Observed vs. predicted EMG traces for the ECRB muscle in the supinated
wrist condition from the Kakei et al. (1999) M1 neural data set. VBLS-full is the result
of applying VBLS on the entire data set.
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Observed EMG

Predicted EMG (VBLS−full)
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(a) Observed vs. predicted EMG traces

Figure B.9: Observed vs. predicted EMG traces for the ECRB muscle in the supinated
wrist condition from the Kakei et al. (2001) PM neural data set. VBLS-full is the result
of applying VBLS on the entire data set.
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Observed x velocities (m/sec)

Predicted x velocities with VBLS (m/sec)

0 500 1000

−0.1

0

0.1

Direction 4

msec

0 500 1000

−0.1

0

0.1

Direction 3

msec

0 500 1000

−0.1

0

0.1

Direction 2

msec

0 500 1000

−0.1

0

0.1

Direction 5

msec
−0.02 0 0.02

−0.02

0

0.02

X (m)

Y
 (

m
)

0 500 1000

−0.1

0

0.1

Direction 1

msec

0 500 1000

−0.1

0

0.1

Direction 6

msec
0 500 1000

−0.1

0

0.1

Direction 7

msec

0 500 1000

−0.1

0

0.1

Direction 8

msec

Figure B.10: Observed vs. predicted velocities in the x direction for the supinated wrist
condition from the Kakei et al. (1999) M1 neural data set.
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Observed y velocities (m/sec)

Predicted y velocities with VBLS (m/sec)
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Figure B.11: Observed vs. predicted velocities in the y direction for the supinated wrist
condition from the Kakei et al. (1999) M1 neural data set.
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Observed x velocities (m/sec)

Predicted x velocities with VBLS (m/sec)
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Figure B.12: Observed vs. predicted velocities in the x direction for the supinated wrist
condition from the Kakei et al. (2001) PM neural data set.
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Observed y velocities (m/sec)

Predicted y velocities with VBLS (m/sec)
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Figure B.13: Observed vs. predicted velocities in the y direction for the supinated wrist
condition from the Kakei et al. (2001) PM neural data set.
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Appendix C

Bayesian Factor Analysis for Regression

C.1 Factor Analysis for Regression

Factor Analysis, e.g., (Ghahramani & Hinton 1997), is a latent variable model used
to detection structure in relationships between variables and to reduce the number of
variables. The observed data y ∈ <p×1 is assumed to be generated fromK latent variables
or factors t:

yi = Wti + εi

for all i, where 1 ≤ i ≤ N and N is the number of samples observed in the data set. The
number of latent variables K is unknown and can be found, for example, by selecting
the number of eigenvalues greater than 1. If the latent variables are assumed to be
independently distributed as:

ti ∼ Normal (0, I)

εi ∼ Normal (0,Ψ) ,

then the factor loadings W and the diagonal noise variance matrix Ψ can be estimated us-
ing the EM algorithm (Ghahramani & Hinton 1997) or Bayesian techniques (Ghahramani
& Beal 2000).

In Factor Analysis for regression (or joint-space Factor Analysis, since both x and y
are jointly considered), we define a vector z that contains both the input data x ∈ <d×1

and scalar output data y:

z ≡

[
x

y

]

and W ≡

[
Wx

Wy

]

and Ψ ≡

[
Ψx 0

0T ψy

]

where Wx, Wy are factor loadings for x and y, respectively and Ψx, ψy are the noise
variances for x and y, respectively. Once we estimate W and Ψ for the joint data
space of z, we can condition y on x and marginalize out the latent variables t. The
joint distribution of the observed and latent variables will have the following mean and
covariance:

〈[
x

y

]〉

= 0
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Cov

([
x

y

])

=

[
WWT + Ψ W

WT I

]

The covariance matrix can then be partitioned as follows:

Cov

([
x

y

])

=





WxW
T
x + Ψx WxW

T
y Wx

WT
y WT

x WyW
T
y + ψy Wy

WT
x WT

y I





leading to the following conditional distribution:

〈[
y
t

]

|x

〉

=

[
WyW

T
x

WT
x

]
(
WxW

T
x + Ψx

)−1
x

Marginalizing out t, we obtain:

〈y|x〉 = WyW
T
x

(
WxW

T
x + Ψx

)−1
x

= Wy

(
I + WT

xΨ−1
x Wx

)−1
WT

xΨ−1
x

︸ ︷︷ ︸

bT
JFR

x

where 〈·〉 indicates expectation and the matrix inversion lemma has been applied in the
second line. Hence,

bJFR = Ψ−1
x Wx

(
I + WT

xΨ−1
x Wx

)−1
WT

y (C.1)

Note that the required matrix inversion of
(
I + WT

xΨ−1
x Wx

)
is of the order of the latent

dimensionalityK, which makes joint-space Factor Analysis for regression computationally
attractive for problems in which the underlying latent variable manifold is known to be
relatively low dimensional (i.e. K � d).

C.2 Derivation of Bayesian Joint Factor Analysis

To derive the final EM update equations for model in Section 3.2.2, we can proceed in a
similar fashion as described in Appendix A.1. The complete log likelihood expression in
Eq. (3.9) can be expanded to:

log p(y,Z,T,wz,wx,α|X)

= −
N

2
logψy −

1

2ψy

N∑

i=1

(
yi − 1T zi

)2
−
N

2

d∑

m=1

logψzm −
d∑

m=1

1

2ψzm

N∑

i=1

(zim − timwzm)2

−
N

2

d∑

m=1

logψxm −
d∑

m=1

1

2ψxm

N∑

i=1

(xim − timwxm)2

+
1

2

d∑

m=1

logαm −
1

2

d∑

m=1

αmw
2
zm +

1

2

d∑

m=1

logαm −
1

2

d∑

m=1

αmw
2
xm
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−
1

2

d∑

m=1

N∑

i=1

t2im +
d∑

m=1

(
aαm,0 − 1

)
logαm −

d∑

m=1

bαm,0αm + const

The M-step equations can be derived by maximizing the complete log likelihood with
respect to each of the parameters ψy, ψzm and ψxm.

Assuming that:

Q(α,wz,wx,Z,T) = Q(α)Q(wz)Q(wx)Q(Z,T),

we can then infer the posterior distributions of the random variables (E-step updates)
analytically:

• For Q(α):

logQ(α) =
d∑

m=1

{

logαm −
1

2
αm
〈
w2
zm

〉
−

1

2
αm
〈
w2
xm

〉

+
(
aαm,0 − 1

)
logαm − bαm,0αm

}
+ constα

=
d∑

m=1

[

aαm,0+1−1 logαm −

(

bαm,0 +

〈
w2
zm

〉
+
〈
w2
xm

〉

2

)

αm

]

+ constα

Assuming Q(α) =
∏d
m=1Q(αm) and Q(αm) = Gamma(âαm , b̂αm),

âαm = aαm,0 + 1

b̂αm = bαm,0 +

〈
w2
zm

〉
+
〈
w2
xm

〉

2

(C.2)

• For Q(Wz):

logQ(Wz) =
d∑

m=1

[

−
1

2ψzm

N∑

i=1

〈

(zim − wzmtim)2
〉

−
1

2
〈αm〉w

2
zm

]

+ constWz

= −
1

2

d∑

m=1

[

w2
zm

(

1

ψzm

N∑

i=1

〈
t2im
〉

+ 〈αm〉

)

− 2wzm

(

1

ψzm

N∑

i=1

〈zimtim〉

)]

−
1

2

[

1

ψzm

N∑

i=1

〈
z2
im

〉

]

+ constWz

Assuming Q(Wz) =
∏d
m=1Q(wzm) and Q(wzm) = Normal(〈wzm〉 , σ

2
wzm

),

σ2
wzm

=

(

1

ψzm

N∑

i=1

〈
t2im
〉

+ 〈αm〉

)−1

〈wzm〉 = σ2
wzm

(

1

ψzm

N∑

i=1

〈zimtim〉

) (C.3)
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• For Q(Wx):

logQ(Wx) =
d∑

m=1

[

−
1

2ψxm

N∑

i=1

〈

(xim − wxmtim)2
〉

−
1

2
〈αm〉w

2
xm

]

+ constWx

= −
1

2

d∑

m=1

[

w2
xm

(

1

ψxm

N∑

i=1

〈
t2im
〉

+ 〈αm〉

)

− 2wxm

(

1

ψzm

N∑

i=1

xim 〈tim〉

)]

−
1

2

[

1

ψxm

N∑

i=1

x2
im

]

+ constWy

Assuming Q(Wx) =
∏d
m=1Q(wxm) and Q(wxm) = Normal(〈wxm〉 , σ

2
wxm

),

σ2
wxm

=

(

1

ψxm

N∑

i=1

〈
t2im
〉

+ 〈αm〉

)−1

〈wxm〉 = σ2
wxm

(

1

ψxm

N∑

i=1

xim 〈tim〉

) (C.4)
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• For Q(η) (where η = {zi, ti}):

logQ(η)

= −
1

2ψy

N∑

i=1

〈(
yi − 1T zi

)2
〉

−
d∑

m=1

1

2ψzm

N∑

i=1

〈

(zim − timwzm)2
〉

−
d∑

m=1

1

2ψxm

N∑

i=1

〈

(xim − timwxm)2
〉

−
1

2

d∑

m=1

N∑

i=1

〈
t2im
〉

= −
1

2

N∑

i=1

[
1

ψy

(
yi − 1T zi

)2
+
〈

(zi − Wyti)
T Ψ−1

z (zi − Wyti)
〉]

−
1

2

N∑

i=1

〈

(xi − Wxti)
T Ψ−1

x (xi − Wxti)
〉

−
1

2

N∑

i=1

〈
tTi ti

〉

= −
1

2

N∑

i=1

[

−2
yi1

T zi
ψy

+ zTi
11T

ψy
zi + zTi Ψ−1

z zi − 2zTi Ψ−1
z 〈Wy〉 ti + tTi

〈
WT

y Wy

〉
Ψ−1
z

]

−
1

2

N∑

i=1

[

tTi
(
I +

〈
WT

xWx

〉
Ψ−1
x

)
ti − 2tTi 〈Wx〉

T Ψ−1
x xi

]

= −
1

2

N∑

i=1

[

zTi

(
11T

ψy
+ Ψ−1

z

)

zi + tTi
(
I +

〈
WT

xWx

〉
Ψ−1
x +

〈
WT

y Wy

〉
Ψ−1
z

)
ti

]

−
1

2

N∑

i=1

[

−2
yi
∑d

m=1 zim
ψy

− 2
d∑

m=1

xim 〈wxm〉 tim
ψxm

− 2
d∑

m=1

zim 〈wzmαm〉 tim
ψzm

]

(C.5)

where
〈
WT

y Ψ−1
z Wy

〉
=
〈
WT

y Wy

〉
Ψ−1
z since Ψ−1

z , Wy are both diagonal matrices

and, similarly,
〈
WT

xΨ−1
x Wx

〉
=
〈
WT

xWx

〉
Ψ−1
x .

Now, since we know the joint posterior of z and t is joint Gaussian distribution, it
will take the form:

([
zi
ti

]

− µ

)T

Σ−1

([
zi
ti

]

− µ

)

=

[
zi
ti

]T

Σ−1

[
zi
ti

]

− 2µTΣ−1

[
zi
ti

]

+ µTµ

(C.6)

Expanding out the quadratic term in [zi ti]
T from Eq. (C.6), we match up the

coefficients of terms in Eq. (C.5) to find that the inverse posterior covariance matrix
is:

Σ−1 =

[
Azz Azt
Atz Att

]

=

[
11
ψy

+ Ψ−1
z −Ψ−1

z 〈Wy〉

− 〈Wy〉
T Ψ−1

z I +
〈
WT

xWx

〉
Ψ−1
x +

〈
WT

y Wy

〉
Ψ−1
z

]

(C.7)
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To find Σ, we use the formula for the inverse of a partitioned matrix to get:

Σ =



 Σzz Σzt

Σtz Σtt



 =

[
(
Azz −AztA

−1
tt Atz

)−1
−ΣzzAztA

−1
tt

−A−1
tt AztΣzz A−1

tt +A−1
tt AztΣzzAztA

−1
tt

]

We can use the Sherman Morrison Woodbury Theorem to simplify Σzz, noting that
〈
WT

y Wy

〉
= diag

(
wzw

T
z + σ2

wz

)
=
(
ΣWy

)

mm
+ 〈Wy〉

T 〈Wy〉:

Σ−1
zz = Azz −AztA

−1
tt Atz

=
1

ψy
11T + Ψ−1

z

− Ψ−1
z 〈Wy〉

(
I +

〈
WT

xWx

〉
Ψ−1
x +

〈
WT

y Wy

〉
Ψ−1
z

)−1
〈Wy〉

T Ψ−1
z

=
1

ψy
11T + Ψ−1

z

− Ψ−1
z 〈Wy〉

(
I +

〈
WT

xWx

〉
Ψ−1
x +

〈
WT

y Wy

〉
Ψ−1
z

)−1
〈Wy〉

T Ψ−1
z

=
1

ψy
11T + Ψ−1

z

− Ψ−1
z 〈Wy〉

(

I +
〈
WT

xWx

〉
Ψ−1
x + (ΣWy

)mmΨ−1
x + 〈Wy〉

T Ψ−1
z 〈Wy〉

)−1

〈Wy〉
T Ψ−1

z

=
1

ψy
11T +

(

Ψz + 〈Wy〉
(
I +

〈
WT

xWx

〉
Ψ−1
x +

(
ΣWy

)

mm
Ψ−1
z

)−1
〈Wy〉

T
)−1

leading to...

Σzz =

[
1

ψy
11T +

(

Ψz + 〈Wy〉
(
I +

〈
WT

xWx

〉
Ψ−1
x +

(
ΣWy

)

mm
Ψ−1
z

)−1
〈Wy〉

T
)−1

]−1

= M −
M11TM

ψy + 1TM1
where...

M = Ψz + 〈Wy〉
(
I +

〈
WT

xWx

〉
Ψ−1
x +

(
ΣWy

)

mm
Ψ−1
z

)−1
〈Wy〉

T

Therefore, the full posterior covariance of z and t consists of the following block
matrices:

Σ =

[
Σzz Σzt

Σtz Σtt

]
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where:

Σzz = M −
M11TM

ψy + 1TM1

Σzt = −Σzz 〈Wz〉Ψ−1
z

(
I + Ψ−1

x

〈
WT

xWx

〉
+
〈
WT

z Wz

〉
Ψ−1
z

)−1

Σtz = (Σzt)
T

Σtt =
(
I +

〈
WT

xWx

〉
Ψ−1
x +

〈
WT

z Wz

〉
Ψ−1
z

)−1
+A−1

tt AtzΣzzAtzA
−1
tt

M = Ψz + 〈Wz〉
(
I +

〈
WT

xWx

〉
Ψ−1
x + (ΣWz

)mm Ψ−1
z

)−1
〈Wz〉

T

(C.8)

Notice that all the above equations involve diagonal matrices and, as a result, require
a computational complexity that is linear in the number of dimensions.

To find the means of zi and ti, we refer to Eq. (C.6) and, in a similar manner for
the covariance matrix, match up coefficients of the term linear in [zi ti]

T to get:

−2µΣ−1

[
zi
ti

]

= −2

(

yi
∑d

m=1 zim
ψy

+
d∑

m=1

xim 〈wxm〉 tim
ψxm

)

= −2
[

yi1
T

ψy
xi 〈Wx〉

T Ψ−1
x

] [ zi
ti

]

so that:

〈zi〉 =
[

yi1
T

ψy
xi 〈Wx〉

T Ψ−1
x

] [ Σzz

Σtz

]

〈ti〉 =
[

yi1
T

ψy
xi 〈Wx〉

T Ψ−1
x

] [ Σzt

Σtt

]

Therefore,

〈zi〉 =
yi
ψy

1TΣzz + xi 〈Wx〉
T Ψ−1

x Σtz

〈ti〉 = −
yi
ψy

1TΣzz 〈Wz〉Ψ−1
z

(
I + Ψ−1

x

〈
WT

xWx

〉
+
〈
WT

z Wz

〉
Ψ−1
z

)−1

+ xi 〈Wx〉
T Ψ−1

x Σtt

σ2
z = diag (Σzz)

σ2
t = diag (Σt)

cov(z, t) = diag (Σzt)

(C.9)

As a final note:

〈
w2
zm

〉
= 〈wzm〉

2 + σ2
wzm

〈
w2
xm

〉
= 〈wxm〉

2 + σ2
wxm

〈
t2im
〉

= 〈tim〉
2 + σ2

t

〈
z2
im

〉
= 〈zim〉

2 + σ2
z
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C.3 Monitoring the Incomplete Log Likelihood

To know when to stop iterating through the EM algorithm above, we should monitor
the incomplete log likelihood and stop when the value appears to have converged. To
calculate the incomplete log likelihood, we need to integrate out the variables α, wz, wx,
Z, T from the complete log likelihood expression. But since the calculation of the true
posterior distribution Q(θ) is intractable, we cannot determine the true incomplete log
likelihood. Hence, for the purpose of monitoring the incomplete log likelihood in the EM
algorithm, we can monitor the lower bound of the incomplete log likelihood instead.

In the derivation of the EM algorithm, we reached an estimate of Q(θ), where θ =
{α,wz,wx,Z,T}, to be Q(α)Q(wz)Q(wx)Q(Z,T). The lower bound to the incomplete
log likelihood, where φ = {ψy, ψz, ψx} is:

log p(y|X;φ) ≥

∫

Q(θ) log
p(y, θ|X;φ)

Q(θ)
dθ

=

∫

Q(θ) log p(y, θ|X;φ)dθ −

∫

Q(θ) logQ(θ)dθ

= 〈log p(y, θ|X;φ)〉Q(θ) −

∫

Q(θ) logQ(θ)dθ

and this simplifies to:

log p(y|X;φ) ≥

−
N

2
logψy −

1

2ψy

N∑

i=1

(
yi − 2yi1

T 〈zi〉 + 1T
〈
ziz

T
i

〉
1
)

−
N

2

d∑

m=1

logψzm −
d∑

m=1

1

2ψzm

N∑

i=1

(〈
z2
im

〉
− 2 〈wzm〉 〈zimtim〉 +

〈
w2
zm

〉 〈
t2im
〉)

−
N

2

d∑

m=1

logψxm −

d∑

m=1

1

2ψxm

N∑

i=1

(
x2
im − 2 〈wxm〉 〈tim〉xim +

〈
w2
xm

〉 〈
t2im
〉)

−
1

2

d∑

m=1

N∑

i=1

〈
t2im
〉
−

1

2

d∑

m=1

〈αm〉
〈
w2
zm

〉
−

1

2

d∑

m=1

〈αm〉
〈
w2
xm

〉

−

d∑

m=1

aαm0 log b̂αm −

d∑

m=1

bαm0 〈αm〉

−
1

2
log |Σ−1

z,t | −
d∑

m=1

log b̂αm +
1

2

d∑

m=1

log σ2
wzm

+
1

2

d∑

m=1

log σ2
wxm

+ Constant

(C.10)

Note that once the EM algorithm has converged and we have the final values for the un-
known variables and point-estimated parameters, we still need to infer what the regression
coefficient if we want to make predictions.
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Appendix D

Bayesian Local Kernel Shaping

D.1 Deriving a Lower Bound Using Convex Duality

Eq. (5.8) contains a problematic term of:

− log
(

1 + (xim − xqm)2r hm

)

that prevents us from deriving an analytically tractable expression for the posterior of hm.
We can use a variational approach on concave/convex functions suggested by Jaakkola &
Jordan (2000) to find analytically tractable expressions. Specifically, we can find a lower
bound to the term using the convex duality approximations:

− log
(

1 + (xim − xqm)2r hm

)

≥ max
λim

[

−λimhm (xim − xqm)2r − f∗(λim)
]

(D.1)

where λim is a variational parameter to be optimized and:

f∗(λim) = max
λim

[

−λimhm (xim − xqm)2r + log
(

1 + (xim − xqm)2r hm

)]

We can then find the value of hm that maximizes f∗(λim):

∂f∗(λim)

∂hm
= 0

− (xim − xqm)2r λim +
(xim − xqm)2r

1 + (xim − xqm)2r hm
= 0

hm (xim − xqm)2r =
1

λim
− 1

Hence:

f∗(λim) = −λim

(
1

λim
− 1

)

+ log

(

1 +
1

λim
− 1

)

= −1 + λim − log λim (D.2)
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Substituting the expression for f∗(λim) in Eq. (D.1) into the lower bound Eq. (D.2), we
get:

−λimhm (xim − xqm)2r − f∗(λim) = −λimhm (xim − xqm)2r + 1 − λim + log λim (D.3)

and find the optimal value of the variational parameter λim by maximizing Eq. (D.3):

∂

∂λim

[

−λim 〈hm〉 (xim − xqm)2r + 1 − λim + log λim

]

= 0

−〈hm〉 (xim − xqm)2r − 1 +
1

λim
= 0

1

λim
= 1 + 〈hm〉 (xim − xqm)2r

λim =
1

1 + 〈hm〉 (xim − xqm)2r

In summary, we can find a lower bound to the problem log term in Eq. (5.8) in the
form of:

− log
(

1 + (xim − xqm)2r hm

)

≥ −λimhm (xim − xqm)2r + 1 − λim + log λim (D.4)

where the lower bound is maximized when:

λim =
1

1 + 〈hm〉 (xim − xqm)2r
(D.5)

D.2 Derivation of Bayesian Kernel Shaping

To derive the final EM update equations for the model in Section 5.1.1, we can proceed
in a similar fashion as described in Appendix A.1. Assuming that:

Q(b, ψz,h, z) = Q(b, ψz)Q(h)Q(z)

we can infer the posterior distributions of the random variables (E-step updates) analyt-
ically:

• For Q(b|ψz):

Assuming that Q(b) =
∏d
m=1Q(bm):

logQ(bm|ψzm)

= −
1

2ψzm

N∑

i=1

〈wi〉
〈(
zim − bTmxim

)2
〉

−
1

2ψzm
bTmΣ−1

bm,0
bm + constbm|ψzm

= −
1

2ψzm

N∑

i=1

〈wi〉
(〈
z2
im

〉
− 2 〈zim〉 〈bm〉

T
xim + bTmximxTimbm

)

−
1

2ψzm
bTmΣ−1

bm,0
bm + constbm|ψzm
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= −
1

2

[

bTm
1

ψzm

(

Σ−1
bm,0

+

N∑

i=1

〈wi〉ximxTim

)

bm − 2bTm
1

ψzm

N∑

i=1

〈wi〉 〈zim〉xim

]

+ constbm|ψzm

then the posterior covariance and mean of bm is:

Σbm
=

(

Σ−1
bm,0

+
1

ψzmN

N∑

i=1

〈wi〉ximxTim

)−1

〈bm〉 = Σbm

(
N∑

i=1

〈wi〉 〈zim〉xim

) (D.6)

• For Q(ψz):

Assuming Q(ψz) =
∏d
m=1Q(ψzm),

logQ(ψzm)

= −
1

2
logψzm

N∑

i=1

〈wi〉 −
1

2ψzm

N∑

i=1

〈wi〉
〈(
zim − bTmxim

)2
〉

−
1

2
logψzm

−
1

2ψzm

〈

bmTΣ−1
bm,0

bm

〉

−
(nm0

2
+ 1
)

logψzm −
nm0

2

ψzmN0

ψzm

−

∫

Q(bm|ψzm) logQ(bm|ψzm)dbm + constψzm

= − logψzm

(∑N
i=1 〈wi〉 + nm0 + 1

2
+ 1

)

−
1

2ψzm

(

nm0ψzmN0 +
〈

bTmΣ−1
bm,0

bm

〉

+
N∑

i=1

〈wi〉
〈(
zim − bTmxim

)2
〉
)

+
1

2
{log(2πψzmΣbm

) + 1} + constψzm

Given that:

1

2ψzm

N∑

i=1

〈wi〉
〈(
zim − bTmxim

)2
〉

=
1

2ψzm

[
N∑

i=1

〈wi〉
〈
z2
im

〉
− 2

N∑

i=1

〈wi〉 zimxTim 〈bm〉 +
N∑

i=1

〈wi〉x
T
im

〈
bmbTm

〉
xim

]

=
1

2ψzm

N∑

i=1

〈wi〉
(
〈zim〉 − xTim 〈bm〉

)2
+

1

2ψzm

N∑

i=1

〈wi〉x
T
imψzmΣbm

xim

+
1

2ψzm

N∑

i=1

〈wi〉Σzi|yi,xi
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and

−
1

2ψzm

〈

bTmΣ−1
bm,0

bm

〉

= −
1

2ψzm
〈bm〉

T
Σ−1

bm,0
〈bm〉

we then get:

logQ(ψzm)

= logψzm

(

nm0 +
N∑

i=1

〈wi〉

)

−
1

2ψzm

[

nm0ψzmN0 + 〈bm〉
T

Σ−1
bm,0

〈bm〉

+
N∑

i=1

〈wi〉
(
〈zim〉 − xTim 〈bm〉

)2
+

N∑

i=1

〈wi〉Σzi|yi,xi

]

+ constψzm

giving us:

nm = nm0 +
N∑

i=1

〈wi〉

ψzmN =
1

n0 +
∑N

i=1 〈wi〉

[

nm0ψzmN0 + 〈bm〉
T

Σ−1
bm,0

〈bm〉

+

N∑

i=1

〈wi〉
(
〈zim〉 − xTim 〈bm〉

)2
+

N∑

i=1

〈wi〉Σzi|yi,xi

]

(D.7)

• For Q(h):

Assuming Q(h) =
∏d
m=1Q(hm):

logQ(h) =
d∑

m=1

N∑

i=1

(1 − 〈wi〉) log hm (xim − xqm)2r −
d∑

m=1

N∑

i=1

λi (xim − xqm)2r hm

+

d∑

m=1

(ahm0 − 1) log hm −

d∑

m=1

bhm0hm + consth

=
d∑

m=1

(

ahm0 +N −
N∑

i=1

〈wi〉 − 1

)

log hm

−
d∑

m=1

(

bhm0 +
N∑

i=1

λim (xim − xqm)2r
)

hm + consth

where λim = 1
1+〈hm〉(xim−xqm)2r . From the above, we can infer the posterior mean

of hm to be:

〈hm〉 =
ahm0 +N −

∑N
i=1 〈wi〉

bhm0 +
∑N

i=1 λim (xim − xqm)2r
(D.8)
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• For Q(zi):

Inference of the posterior distribution of zi is done in a similar manner as in Ap-
pendix A.1.
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