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Abstract— In this paper, we introduce a modified Kalman
filter that can perform robust, real-time outlier detection in the
observations, without the need for parameter tuning. Robotic
systems that rely on high quality sensory data can be sensitive
to data containing outliers. Since the standard Kalman filter
is not robust to outliers, other variations of the Kalman
filter have been proposed to overcome this issue, but these
methods may require parameter tuning, use of heuristics or
complicated parameter estimation. Our Kalman filter uses a
weighted least squares-like approach by introducing weights
for each data sample. A data sample with a smaller weight
has a weaker contribution when estimating the current time
step’s state. We learn the weights and system dynamics using a
variational Expectation-Maximization framework. We evaluate
our Kalman filter algorithm on synthetic data and data from
a robotic dog.

I. INTRODUCTION

In order to maintain robust control in robotic systems, a

high quality of sensory data is needed. While data from

sensors such as potentiometers and optical encoders are

easily interpretable in their noise characteristics, other sen-

sors such as visual systems, GPS devices and sonar sensors

often provide measurements populated with outliers. As a

result, robust, reliable detection and removal of outliers is

essential in order to process these kinds of data. For example,

the application domain of legged locomotion is particularly

vulnerable to perceptual data of poor quality, since one

undetected outlier can disturb the balance controller to the

point that the robot loses stability.

An outlier is generally defined as an observation that “lies

outside some overall pattern of distribution” [1]. Outliers

may originate from sensor noise (producing values that fall

outside a valid range), from temporary sensor failures, or

from unanticipated disturbances in the environment (e.g., a

brief change of lighting conditions for a visual sensor).

For real-time applications, storing data samples may not

be a viable option due to the high frequency of sensory

data and insufficient memory resources. In this scenario,

sensor data are made available one at a time and must be

discarded once they have been observed. Hence, techniques

that require access to the entire set of data samples, such

as the Kalman smoother (e.g., [2], [3]), are not applicable.

Instead, the Kalman filter (e.g., [4], [5]) is a more suitable

method, since it assumes that only data samples up to the

current time step have been observed. The Kalman filter

propagation and update equations are recursive and do not

require direct access to previously observed data.

The Kalman filter is a widely used tool for estimating the

state of a dynamic system, given noisy measurement data. It

is the optimal linear estimator for linear Gaussian systems,

giving the minimum mean squared error [6]. Using state

estimates, the filter can also estimate what the corresponding

(output) data are. However, the performance of the Kalman

filter degrades when the observed data contains outliers.

To address this, previous work has tried to make the

Kalman filter more robust to outliers by addressing the

sensitivity of the squared error criterion to outliers [7],

[8]. One class of approaches considers non-Gaussian dis-

tributions for random variables (e.g., [9], [10], [11], [12]),

since multivariate Gaussian distributions are known to be

susceptible to outliers. For example, [13] use multivariate

Student-t distributions. However, the resulting estimation

of parameters may be quite complicated for systems with

transient disturbances.

Alternatively, it is possible to model the observation and

state noise as non-Gaussian, heavy-tailed distributions to

account for non-Gaussian noise and outliers (e.g., [14], [15],

[16]). Unfortunately, these filters are typically more difficult

to implement and may no longer provide the conditional

mean of the state vector. Other approaches use resampling

techniques (e.g., [17], [18]) or numerical integration (e.g.,

[19], [20]), but these may require heavy computation not

suitable for real-time applications.

Yet another class of methods uses a weighted least squares

approach, as done in robust least squares [21], [22], where

the measurement residual error is assigned some statistical

property. Some of these algorithms fall under the first cat-

egory of approaches as well, assuming non-Gaussian distri-

butions for variables. Each data sample is assigned a weight

that indicates its contribution to the hidden state estimate at

each time step. This technique has been used to produce a

Kalman filter that is more robust to outliers (e.g., [23], [24]).

However, these methods usually model the weights as some

heuristic function of the data (e.g., the Huber function [22])

and often require tuning of threshold parameters for optimal

performance. Using incorrect or inaccurate estimates for the

weights may lead to deteriorated performance, so special

attention and care is necessary when using these techniques.

In this paper, we are interested in the problem of iden-

tifying outliers while tracking the observed data using the

Kalman filter. Identifying outliers in the state is different

problem entirely, and this is left for another paper. We

introduce a modified Kalman filter that can detect outliers
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in the observed data without the need for parameter tuning

or use of heuristic methods on the user’s part.

This filter learns the weights of each data sample, as well

as the system dynamics, using an Expectation-Maximization

(EM) framework [25]. For ease of analytical computation,

we assume Gaussian distributions for variables and states.

We illustrate the performance of this robust Kalman filter on

synthetic and robotic data, comparing it with other robust

approaches and demonstrating its effectiveness at detecting

outliers in the observations.

II. OUTLIER DETECTION IN THE KALMAN FILTER

Let us assume we have data {zk}
N

k=1
, observed over N

time steps, where zk ∈ <d1×1. We denote the corresponding

hidden states as {θk}
N

k=1
, where θk ∈ <d2×1. If we assume

that the system is time-invariant, then the Kalman filter

system equations are:

zk = Cθk + vk

θk = Aθk−1 + sk

(1)

where C ∈ <d1×d2 is the observation matrix, A ∈ <d2×d2

is the state transition matrix, vk ∈ <d1×1 is the observation

noise at time step k, and sk ∈ <d2×1 is the state noise

at time step k. We assume vk and sk to be uncorrelated

additive mean-zero Gaussian noise, vk ∼ Normal (0,R),
sk ∼ Normal (0,Q), where R ∈ <d1×d1 is a diagonal

matrix with r ∈ <d1×1 on its diagonal, and Q ∈ <d2×d2

is a diagonal matrix with q ∈ <d2×1 on its diagonal. R

and Q are covariance matrices for the observation and state

noise, respectively. The standard Kalman filter propagation

and update equations are, for k = 1, .., N :

Propagation:

θ
′

k = A 〈θk−1〉 (2)

Σ′

k = AΣk−1A
T + Q (3)

Update:

S′

k =
(

CΣ′

kC
T + R

)−1

(4)

K ′

k = Σ′

kC
T S′

k (5)

〈θk〉 = θ
′

k + K ′

k

(

zk − Cθ
′

k

)

(6)

Σk = (I − K ′

kC)Σ′

k (7)

where 〈θk〉 is the posterior mean vector of the state θk,

Σk is the posterior covariance matrix of θk, and S′

k is

the covariance matrix of the residual prediction error—all

at time step k. In this problem, the system dynamics (C,

A, R and Q) are unknown, and it is possible to use a

maximum likelihood framework to estimate these parameter

values [26]. Unfortunately, this standard Kalman filter model

considers all data samples to be part of the data cloud and

is not robust to outliers.

A. Robust Kalman Filtering with Bayesian Weights

To overcome this limitation, we introduce a novel

Bayesian algorithm that treats the weights associated with

each data sample probabilistically. In particular, we introduce

a scalar weight wk for each observed data sample zk such

that the variance of zk is weighted with wk, as done in [27].

[27] consider a weighted least squares regression model and

assumes that the weights are known and given. We model

the weights to be Gamma distributed random variables, as

done previously in [28] for weighted linear regression. The

resulting prior distributions are then:

zk|θk, wk ∼ Normal (Cθk,R/wk)

θk|θk−1 ∼ Normal (Aθk−1,Q)

wk ∼ Gamma (awk
, bwk

)

(8)

We can treat this entire problem as an Expectation-

Minimization-like (EM) learning problem [25], [29] and

maximize the log likelihood log p(θ1:N ) (otherwise known as

the “incomplete” log likelihood with the hidden probabilistic

variables marginalized out). Due to analytical issues, we

only have access to a lower bound of this measure. This

lower bound is based on an expected value of the “complete”

data likelihood 〈log p (θ1:N , z1:N ,w)〉 1, formulated over all

variables of the learning problem:

log p (θ1:N , z1:N ,w)

=

N
∑

i=1

log p (zi|θi, wi) +

N
∑

i=1

log p (θi|θi−1)

+ log p (θ0) +

N
∑

i=1

log p (wi)

=
1

2

N
∑

i=1

log wi −
N

2
log |R| −

N

2
log |Q|

−
1

2

N
∑

i=1

wi (zi − Cθi)
T

R−1 (zi − Cθi)

−
1

2

N
∑

i=1

(θi − Aθi−1)
T

Q−1 (θi − Aθi−1)

−
1

2
log |Q0| −

1

2

(

θ0 − θ̂0

)T

Q−1

0

(

θ0 − θ̂0

)

+

N
∑

i=1

(awi,0) log wi −

N
∑

i=1

bwi,0wi + constθ,z,w

(9)

where θ0 is the initial state, θ̂0 is the mean of θ0, Q0 is the

noise variance of θ0, w ∈ <N×1 has coefficients wi (i =
1, .., N ), and z1:N denotes samples {z1, z2, .., zN}. Since

we are considering this problem as a real-time one (i.e. data

samples arrive sequentially, one at a time), we will have

observed only data samples z1:k at time step k. Consequently,

in order to estimate the posterior distributions of the random

variables and parameter values at time step k, we should

consider the log evidence of only the data samples observed

to date (i.e., log p (θ1:k, z1:k,w1:k)).
The expectation of the complete data likelihood should be

taken with respect to the true posterior distribution of all hid-

den variables Q (w,θ). However, since this is an analytically

intractable expression, we use a technique from variational

calculus to construct a lower bound and make a factorial

1Note that 〈〉 denotes the expectation operator
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approximation of the true posterior as follows: Q (w,θ) =
∏N

i=1
Q (wi)

∏N

i=1
Q (θi|θi−1) Q(θ0) (e.g., [29]). Note that

the factorization of θ only considers the influence of each

θi from within its Markov blanket (i.e. θi is dependent on

θi−1, zi and wi). While losing a small amount of accuracy,

all resulting posterior distributions over hidden variables

become analytically tractable. We can derive the final EM

update equations by standard manipulations of Normal and

Gamma distributions and arrive at the following for time step

k:

E-step:

Σk =
(

〈wk〉C
T
k R−1

k Ck + Q−1

k

)−1

(10)

〈θk〉 = Σk

(

Q−1

k Ak 〈θk−1〉 + 〈wk〉C
T
k R−1

k zk

)

(11)

〈wk〉 =
awk,0 + 1

2

bwk,0 +
〈

(zk − Ckθk)
T

R−1

k (zk − Ckθk)
〉 (12)

M-step:

Ck =

(

k
∑

i=1

〈wi〉 zi 〈θi〉
T

)(

k
∑

i=1

〈wi〉
〈

θiθ
T
i

〉

)−1

(13)

Ak =

(

k
∑

i=1

〈θi〉 〈θi−1〉
T

)(

k
∑

i=1

〈

θi−1θ
T
i−1

〉

)−1

(14)

rkm =
1

k

k
∑

i=1

〈wi〉
〈

(zim − Ck(m, :)θi)
2

〉

(15)

qkn =
1

k

k
∑

i=1

〈

(θin − Ak(n, :)θi−1)
2
〉

(16)

where 〈θk〉 is the posterior mean of θk; Σk is the posterior

covariance of θk; rkm is the mth coefficient of the vector

rk (for m = 1, .., d1); qkn is the nth coefficient of the vector

qk (for n = 1, .., d2); Ck(m, :) is the mth row of the matrix

Ck; Ak(n, :) is the nth row of the matrix Ak; and awk,0 and

bwk,0 are prior scale parameters for the weight wk. Equations

(10) to (16) need to be computed once for each time step k
(e.g., [30] [31]), when the data sample zk becomes available.

Since sensor data is not collected over time, but discarded

soon after it is received, we are unable to store all past

data samples. As a result, (13) to (16) need to be re-written

in incremental form (i.e., using only values observed and

calculated in the current time step k). We can do this by

collecting sufficient statistics in (13) to (16). The resulting

revised M-update equations are then, at time step k:

Ck = sumwzθ
T

k

(

sumwθθ
T

k

)

−1

(17)

Ak = sumθθ
′

k

(

sumθ
′
θ
′

k

)

−1

(18)

rkm =
1

k

[

sumwzz
km − 2Ck(m, :)

(

sumwzθ

km

)

+diag
{

Ck(m, :)
(

sumwθθ
T

k

)

Ck(m, :)T
}]

(19)

qkn =
1

k

[

sumθ2

kn − 2Ak(n, :)
(

sumθθ
′

kn

)

+diag
{

Ak(n, :)
(

sumθ
′
θ
′

k

)

Ak(n, :)T
}]

(20)

where m = 1, .., d1, n = 1, .., d2, and the sufficient statistics

are:

sumwzθ
T

k = 〈wk〉 zk 〈θk〉
T

+ sumwzθ
T

k−1

sumwθθ
T

k = 〈wk〉
〈

θkθ
T
k

〉

+ sumwθθ
T

k−1

sumθθ
′

k = 〈θk〉 〈θk−1〉
T

+ sumθθ
′

k−1

sumθ
′
θ
′

k =
〈

θk−1θ
T
k−1

〉

+ sumθ
′
θ
′

k−1

sumwzz
km = 〈wk〉 z2

km + sumwzz
k−1

sumwzθ

km = 〈wk〉 zkmθk + sumwzθ

k−1,m

sumθ2

kn =
〈

θ2

kn

〉

+ sumθ2

k−1,n

sumθθ
′

kn = 〈θkn〉 〈θk−1〉 + sumθθ
′

kn

A few remarks should be made regarding the initialization

of priors used in (10) to (12), (17) to (20). In particular, the

prior scale parameters awk,0 and bwk,0 should be selected so

that the weights 〈wk〉 are 1 with some confidence. That is to

say, the algorithm starts by assuming most data samples are

inliers. For example, we can set awk,0 = 1 and bwk,0 = 1
so that 〈wk〉 has a prior mean of awk,0/bwk,0 = 1 with

a variance of awk,0/b2

wk,0 = 1. Secondly, the algorithm is

relatively insensitive to the the initialization of A and C and

will always converge to the same final solution, regardless

of these values. For our experiments, we use C = A = I,

where I is the identity matrix. Finally, the initial values of

R and Q should be set based on the user’s initial estimate

of how noisy the observed data is (e.g., R = Q = 0.01I for

noisy data, R = Q = 10−4I for less noisy data [32]).

B. Relationship to the Kalman Filter

The equations (10) and (11) for the posterior mean and

posterior covariance of θk may not look like the standard

Kalman filter equations in (2) to (7), but with a little

algebraic manipulation, we can show that the model derived

in Section II-A is indeed a variant of the Kalman filter. If

we substitute the propagation equations, (2) and (3), into the

update equations, (4) to (7), we reach recursive expressions

for 〈θk〉 and Σk. By applying this sequence of algebraic

manipulations in reverse order to (10) and (11), we arrive at

the following:

Propagation:

θ
′

k = Ak 〈θk−1〉 (21)

Σ′

k = Qk (22)

Update:

S′

k =

(

CkΣ
′

kC
T
k +

1

〈wk〉
Rk

)

−1

(23)

K ′

k = Σ′

kC
T
k S′

k (24)

〈θk〉 = θ
′

k + K ′

k

(

zk − Ckθ
′

k

)

(25)

Σk = (I − K ′

kCk)Σ′

k (26)

Close examination of the above equations show that (10) and

(11) in the Bayesian model correspond to standard Kalman

filter equations, with modified expressions for Σ′

k and S′

k
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and time-varying system dynamics. Σ′

k, is now Qk instead

of
(

AΣk−1A
T + Q

)

.

Additionally, the term Rk in S′

k is now weighted. Equation

(12) reveals that if the prediction error in zk is so large that

it dominates the denominator, then the weight 〈wk〉 of that

data sample will be very small. As this prediction error term

in the denominator goes to ∞, 〈wk〉 approaches 0. If zk has

a very small weight 〈wk〉, then S′

k, the posterior covariance

of the residual prediction error, will be very small, leading

to a very small Kalman gain K ′

k. In short, the influence of

the data sample zk will be downweighted when predicting

θk, the hidden state at time step k.

C. Monitoring the Residual Error

A common sanity check is to monitor the residual error of

the data z1:N and the hidden states θ1:N in order to ensure

that the residual error values stay within the 3σ bounds

computed by the filter [32]. If we had access to the true

state θk for time step k, we would plot the residual state

error (θk − 〈θk〉) for all time steps k, along with the corre-

sponding ±3σk values, where σ2

k = diag {Σk}. We would

also plot the residual prediction error (zk − CA 〈θk−1〉) for

all time steps k, along with the corresponding ±3σzk
values,

where σ2

zk
= diag {S′

k}.

With these graphs, we should observe the residual error

values remaining within the ±3σ bounds and check that

the residual error does not diverge over time. Residual

monitoring may be useful to verify that spurious data samples

are rejected, since processing of these samples may result

in corrupted filter computations. It offers a peek into the

Kalman filter, providing insights as to how the filter per-

forms.

D. An Alternative Kalman Filter

To examine Σk’s lack of dependency on the previous

state’s posterior covariance, we explored a variation of the

previously introduced robust Kalman filter. In this version,

we did not perform a full Bayesian treatment of the weighted

Kalman filter. Instead, we use the standard Kalman filter

equations, (2) to (7), and modify (4) in an ad hoc manner so

that the output variance for zk, Rk, is now weighted (as in

our original model in (8)):

S′

k =

(

CkΣ
′

kC
T
k +

1

〈wk〉
Rk

)

−1

(27)

We learn the weights 〈wk〉 using (12) from the robust Kalman

filter. Additionally, we estimate the system dynamics (C, A,

R and Q) at each time step using a maximum likelihood

framework (i.e., using (17) to (20) from the robust Kalman

filter). In this alternative filter, Σk is still a function of Σk−1.

While this filter is unprincipled and somewhat arbitrarily

derived, we introduce it in order to examine the effect of

this dependency on the previous state’s covariance in our

experiments.

III. EXPERIMENTAL RESULTS

We evaluated our weighted robust Kalman filter on syn-

thetic and robotic data sets and compared it with three

other filters: i) the standard Kalman filter, ii) the alternative

weighted Kalman filter introduced in Section II-D, and iii) a

Kalman filter where outliers are determined by thresholding

on the Mahalanobis distance. If the Mahalanobis distance is

less than a certain threshold value, then it is considered an

inlier and processed. Otherwise, it is an outlier and ignored.

This threshold value is hand-tuned manually in order to

find the optimal value for a particular data set. Given prior

knowledge of the data set, this thresholded Kalman filter

gives near-optimal performance.

First, we evaluate all four methods on a synthetic data

set where the system dynamics (C, A, R and Q) of the

generative model are known. Then, we try to simulate a

real data set where the hidden states are unknown and only

access to observed data is available. Although they are linear,

Kalman filters are commonly used to track more interesting

“nonlinear” behaviors (i.e., not just a straight line). For this

reason, we try the methods on a synthetic data set exhibiting

nonlinear behavior, where the system dynamics are unknown.

For this paper and these experiments, we are interested

in the prediction of the observed (output) data and detecting

outliers in the observations. We are not interested in the esti-

mation of the system dynamics or in the estimation (or outlier

detection) of the states. Estimation of the system matrices

is a parameter identification problem and is not addressed

in this paper. Similarly, detecting outliers in the states in a

different problem and left to another paper Finally, we run

all filters on data collected from a robotic dog, LittleDog,

manufactured by Boston Dynamics Inc. (Cambridge, MA).

A. Synthetic Data with Known System Dynamics

We generated a data set using (1), using known val-

ues for the system dynamics C, A, R and Q. A one-

dimensional data set was generated for ease of visualization,

but the following observations and results hold for multi-

dimensional data. Figure 1(a) shows observed noisy output

data with outliers, collected over 500 time steps (assuming 1
data sample/time step). Data samples were outliers with 1%
probability, and C = 1,A = 1,R = 0.2,Q = 0.1. These

system matrices were learnt by both the weighted robust

Kalman filter and the alternative filter proposed in Section

II-D. In contrast, the true C, A, R and Q values were used

in the standard Kalman filter and thresholded Kalman filter.

Figure 1(b) shows how sensitive the standard Kalman filter

(in the light colored line) is to outliers, while our weighted

filter is more robust to outliers. Furthermore, Figure 1(c)

compares our filter with the alternative Kalman filter and

the thresholded Kalman filter. All three filters appear to

detect outliers equally well. Figure 1(d) monitors the residual

prediction error for the weighted robust Kalman filter and

demonstrates how the residual error remains within the ±3σ
bounds at all times. We omit the residual error plots for the

three other filters due to lack of space, but the graphs show

similar results.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Received April 8, 2007.



0 100 200 300 400 500

0

1

2

3

4

Time step

O
u
tp

u
t 

d
a
ta

Noisy output

Outliers

(a) Observed noisy output data with outliers

0 100 200 300 400 500

0

1

2

3

4

Time step

O
u
tp

u
t 
d
a
ta

Outliers

Kalman Filter

Weighted Robust KF

(b) Predicted data for the Kalman filter and the
weighted robust Kalman filter

0 100 200 300 400 500

0

1

2

3

4

Time step

O
u
tp

u
t 
d
a
ta

Outliers

Thresholded KF

Alternative Robust KF

Weighted Robust KF

(c) Predicted data for the thresholded Kalman fil-
ter, alternative Kalman filter and weighted robust
Kalman filter. All three filters perform similarly.

0 100 200 300 400 500

−3

−2

−1

0

1

2

3

R
e
s
id

u
a
l 
O

u
tp

u
t 
E

rr
o
r

Time step

Residual prediction error

+/− 3 sigma bounds

(d) Residual prediction error for the weighted
robust Kalman filter

Fig. 1. One-dimensional synthetic output data with noise & outliers (and
known system dynamics, C, A, R and Q) for 500 samples at 1 sample/time
step
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Kalman filter. All three filters perform similarly.
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Fig. 2. One-dimensional data showing a cosine function with noise &
outliers (and unknown system dynamics) for 500 samples at 1 sample/time
step
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B. Synthetic Data with Unknown System Dynamics

Next, we created data exhibiting nonlinear behavior, where

C, A, R, Q and states are unknown, high noise2 (i.e.,

r2 = 0.9) is added to the (output) data, and a data sample is

an outlier with 1% probability. Again, one-dimensional data

is used for ease of visualization, and Figure 2(a) shows a

noisy cosine function with outliers, over 500 time steps. For

optimal performance, C, A, R and Q were manually tuned

for the standard Kalman filter—a tricky and time-consuming

process. In contrast, the system dynamics were learnt for

the thresholded Kalman filter using a maximum likelihood

framework (i.e. using (17) to (20) without any weights).

Figure 2(b) shows how sensitive the standard Kalman filter

is to outliers, while the weighted robust Kalman filter seems

to detect them quite well. In Figure 2(c), we compare the

weighted robust Kalman filter with the alternative filter and

thresholded filter. All three filters appear to perform as well,

which is unsurprising, given the amount of manual tuning

required by the thresholded Kalman filter.

Figure 2(d) shows that the residual prediction error on the

outputs stays within the ±3σ bounds. In Figure 3, we can see

that the covariance of the residual error is slightly smaller for

the weighted robust filter (i.e. we are slightly more confident

in our estimates for the weighted robust filter). This, in turn,

translates to a slightly higher Kalman gain, K ′

k, for the

alternative filter (this is easily seen by plotting both Kalman

gains). A higher K ′

k means that more consideration is given

to the sample zk when estimating the current time step’s

hidden state.

C. LittleDog Robot

Fig. 4. LittleDog (Boston
Dynamics)

We evaluated all filters on

a 12 degree-of-freedom (DOF)

robotic dog, LittleDog, shown in

Figure 4. The robot dog has two

sources that measure its orien-

tation: a motion capture (MO-

CAP) system and an on-board

inertia measurement unit (IMU).

Both provide a quaternion q of

2Noise is parameterized by the coefficient of determination, r2. Noise
is added, scaled to the output variance (i.e., σnoise = cσy), where c =
p

1/r2 − 1.
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(a) Observed data, (qIMU − qMOCAP), from LittleDog
robot: a slowly drifting noisy signal with outliers
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(c) Predicted data for the thresholded Kalman filter,
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filter

Fig. 5. Observed vs. predicted data from LittleDog robot shown for all
Kalman filters, over 6000 samples

the robot’s orientation: qMOCAP from the MOCAP and qIMU

from the IMU.

qIMU drifts over time, since the IMU cannot provide stable

orientation estimation but its signal is clean. The drift that

occurs in the IMU is quite common in systems where sensors

collect data that need to be integrated. In contrast, qMOCAP has

outliers and noise, but no drift. We would like to estimate

the offset between qMOCAP and qIMU, and this offset is a

noisy slowly drifting signal containing outliers. For optimal

performance, we, once again, manually tuned C, A, R and

Q for the standard Kalman filter. The system dynamics of

the thresholded Kalman filter were learnt, and its threshold

parameter was manually tuned for best performance on this
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data set.

Figure 5(a) shows the offset data between qMOCAP and

qIMU for one of the four quaternion coefficients, collected

over 6000 data samples, at 1 sample/time step. As expected,

the standard Kalman filter fails to detect and ignore the

outliers occurring between the 4000th and 5000th sample, as

seen in Figure 5(b). When comparing our weighted robust

Kalman filter with the other remaining two filters, Figure 5(c)

shows that the thresholded Kalman filter does not react as

violently as the standard Kalman filter to outliers and, in fact,

appears to perform similarly to the weighted robust Kalman

filter. This is to be expected, given that we hand-tuned the

threshold parameter for optimal performance. Notice that the

weighted robust filter does not track noise in the data as

closely as the alternative filter. This is a direct result of higher

Kalman gains in the alternative filter and a consequence of

the dependency on the previous state state’s covariance.

IV. CONCLUSIONS AND FUTURE WORKS

We derived a novel Kalman filter that is robust to outliers

by using a weighted least squares approach and introducing

weights for each data sample. This Kalman filter learns the

weights, as well as the system dynamics, without any need

for parameter tuning by the user, heuristics or sampling. We

compared this algorithm with other robust approaches and

demonstrated the effectiveness of this robust Kalman filter on

synthetic and robotic data. The filter was able to perform as

well as a hand-tuned approach (that required prior knowledge

of the data), without the need for parameter tuning. It offers a

competitive, easy-to-use alternative for filtering sensor data.

V. ACKNOWLEDGMENTS

This research was supported in part by National Science

Foundation grants ECS-0325383, IIS-0312802, IIS-0082995,

ECS-0326095, ANI-0224419, a NASA grant AC#98 − 516,

an AFOSR grant on Intelligent Control, the ERATO Kawato

Dynamic Brain Project funded by the Japanese Science and

Technology Agency, and the ATR Computational Neuro-

science Laboratories.

REFERENCES

[1] D. S. Moore and G. P. McCabe. Introduction to the Practice of

Statistics. W.H. Freeman & Company, March 1999.
[2] A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic

Press, 1970.
[3] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with

Applications to Tracking and Navigation. Wiley, 2001.
[4] R. E. Kalman. A new approach to linear filtering and prediction prob-

lems. In Transactions of the ASME - Journal of Basic Engineering,
183:35–45, 1960.

[5] R. E. Kalman and R. S. Bucy. New results in linear filtering and
prediction theory. Journal of Basic Engineering, Transactions ASME,

Series D, 83:95–108, 1961.
[6] J. M. Morris. The Kalman filter: A robust estimator for some classes of

linear quadratic problems. IEEE Transactions on Information Theory,
22:526–534, 1976.

[7] J. W. Tukey. A survey of sampling from contaminated distributions.
In I. Olkin, editor, Contributions to Probability and Statistics, pages
448–485. Stanford University Press, 1960.

[8] P. J. Huber. Robust estimation of a location parameter. Annals of

Mathematical Statistics, 35:73–101, 1964.
[9] H. W. Sorensen and D. L. Alspach. Recursive Bayesian estimation

using Gaussian sums. Automatica, 7:467–479, 1971.

[10] M. West. Robust sequential approximate Bayesian estimation. Journal

of the Royal Statistical Society, Series B, 43:157–166, 1981.
[11] M. West. Aspects of Recursive Bayesian Estimation. PhD thesis, Dept.

of Mathematics, University of Nottingham, 1982.
[12] A. F. M. Smith and M. West. Monitoring renal transplants: an

application of the multiprocess Kalman filter. Biometrics, 39:867–878,
1983.

[13] R. J. Meinhold and N. D. Singpurwalla. Robustification of Kalman
filter models. Journal of the American Statistical Association, pages
479–486, 1989.

[14] C. Masreliez. Approximate non-Gaussian filtering with linear state
and observation relations. IEEE Transactions on Automatic Control,
20:107–110, 1975.

[15] C. Masreliez and R. Martin. Robust Bayesian estimation for the
linear model and robustifying the Kalman filter. IEEE Transactions

on Automatic Control, 22:361–371, 1977.
[16] I. C. Schick and S. K. Mitter. Robust recursive estimation in the

presence of heavy-tailed observation noise. Annals of Statistics,
22(2):1045–1080, 1994.

[17] G. Kitagawa. Non-Gaussian state-space modeling of nonstationary
time series. Journal of the American Statistical Association, 82:1032–
1063, 1987.

[18] S. C. Kramer and H. W. Sorenson. Recursive Bayesian estimation
using piece-wise constant approximations. Automatica, 24(6):789–
801, 1988.

[19] G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian
nonlinear state-space models. Journal of the American Statistical

Association, 93:1203–1215, 1996.
[20] G. Kitagawa and W. Gersch. Smoothness priors analysis of time series.

In Lecture Notes in Statistics. Springer-Verlag, 1996.
[21] T. P. Ryan. Modern Regression Methods. Wiley, 1997.
[22] P. J. Huber. Robust Statistics. Wiley, 1973.
[23] Z. M. Durovic and B. D. Kovacevic. Robust estimation with unknown

noise statistics. IEEE Transactions on Automatic Control, 44:1292–
1296, 1999.

[24] S. C. Chan, Z. G. Zhang, and K. W. Tse. A new robust Kalman
filter algorithm under outliers and system uncertainties. In IEEE

International Symposium on Circuits and Systems, pages 4317–4320.
IEEE, 2005.

[25] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of Royal Statistical

Society. Series B, 39(1):1–38, 1977.
[26] K. A. Myers and B. D. Tapley. Adaptive sequential estimation with

unknown noise statistics. IEEE Transactions on Automatic Control,
21:520–523, 1976.

[27] A. Gelman, J. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data

Analysis. Chapman and Hall, 2000.
[28] J. Ting, A. D’Souza, and S. Schaal. Automatic outlier detection: A

Bayesian approach. In IEEE International Conference on Robotics

and Automation, 2007.
[29] Z. Ghahramani and M.J. Beal. Graphical models and variational

methods. In D. Saad and M. Opper, editors, Advanced Mean Field

Methods - Theory and Practice. MIT Press, 2000.
[30] Z. Ghahramani and G. Hinton. Parameter estimation for linear

dynamical systems. Technical report, University of Toronto, 1996.
[31] R. M. Neal and G. E. Hinton. A view of the EM algorithm that

justifies incremental, sparse, and other variants. In M. I. Jordan, editor,
Learning in Graphical Models, pages 355–368. MIT Press, 1999.

[32] Peter S. Maybeck. Stochastic models, estimation, and control, volume
141 of Mathematics in Science and Engineering. Academic Press,
1979.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Received April 8, 2007.


