Learning an Outlier-Robust Kalman Filter
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Abstract. We introduce a modified Kalman filter that performs robust,
real-time outlier detection, without the need for manual parameter tun-
ing by the user. Systems that rely on high quality sensory data (for
instance, robotic systems) can be sensitive to data containing outliers.
The standard Kalman filter is not robust to outliers, and other variations
of the Kalman filter have been proposed to overcome this issue. However,
these methods may require manual parameter tuning, use of heuristics
or complicated parameter estimation procedures. Our Kalman filter uses
a weighted least squares-like approach by introducing weights for each
data sample. A data sample with a smaller weight has a weaker contribu-
tion when estimating the current time step’s state. Using an incremental
variational Expectation-Maximization framework, we learn the weights
and system dynamics. We evaluate our Kalman filter algorithm on data
from a robotic dog.

1 Introduction

Systems that rely on high quality sensory data are often sensitive to data con-
taining outliers. While data from sensors such as potentiometers and optical
encoders are easily interpretable in their noise characteristics, other sensors such
as visual systems, GPS devices and sonar sensors often provide measurements
populated with outliers. As a result, robust, reliable detection and removal of
outliers is essential in order to process these kinds of data. For example, in the
application domain of robotics, legged locomotion is vulnerable to sensory data
of poor quality, since one undetected outlier can disturb the balance controller
to the point that the robot loses stability.

An outlier is generally defined as an observation that “lies outside some
overall pattern of distribution” [1]. Outliers may originate from sensor noise
(producing values that fall outside a valid range), from temporary sensor failures,
or from unanticipated disturbances in the environment (e.g., a brief change of
lighting conditions for a visual sensor). Note that some prior knowledge about
the observed data’s properties must be known. Otherwise, it is impossible to
discern if a data sample that lies some distance away from the data cloud is
truly an outlier or simply part of the data’s structure.

For real-time applications, storing data samples may not be a viable option
due to the high frequency of sensory data and insufficient memory resources. In



this scenario, sensor data are made available one at a time and must be discarded
once they have been observed. Hence, techniques that require access to the entire
set of data samples, such as the Kalman smoother are not applicable. Instead,
the Kalman filter [2] is a more suitable method, since it assumes that only data
samples up to the current time step have been observed.

The Kalman filter is a widely used tool for estimating the state of a dynamic
system, given noisy measurement data. It is the optimal linear estimator for
linear Gaussian systems, giving the minimum mean squared error [3]. Using state
estimates, the filter can also estimate what the corresponding (output) data are.
However, the performance of the Kalman filter degrades when the observed data
contains outliers.

To address this, previous work has tried to make the Kalman filter more ro-
bust to outliers by addressing the sensitivity of the squared error criterion to out-
liers [4] non-Gaussian, heavy-tailed distributions for random variables (e.g., [5] )
or for observation and state noise, e.g., [6]. However, the resulting estimation of
parameters may be quite complicated for systems with transient disturbances,
and these filters may be more difficult to implement. Other approaches use re-
sampling techniques or numerical integration, e.g., [7], that are not suitable for
real-time applications.

Yet another class of methods uses a weighted least squares approach, as
done in robust least squares [8], where each data sample is assigned a weight
that indicates its contribution to the hidden state estimate at each time step,
e.g., [9]. These methods model the weights as some heuristic function of the
data (e.g., the Huber function [8]) and often require manual tuning of threshold
parameters for optimal performance. Using incorrect or inaccurate estimates for
the weights may lead to deteriorated performance, so special care is necessary
with these techniques.

In this paper, we are interested in making the Kalman filter more robust
to the outliers in the observations (i.e. the filter should identify and eliminate
possible outliers as it tracks observed data). Identifying outliers in the state is
a different problem, left for another paper. We introduce a modified Kalman
filter that can detect outliers in the observed data without the need for manual
parameter tuning or use of heuristic methods. For ease of analytical computation,
we assume Gaussian distributions for variables and states. We illustrate the
performance of this robust Kalman filter on robotic data, comparing it with other
robust Kalman filter methods and demonstrating its effectiveness at detecting
outliers in the observations.

2 Outlier Detection in the Kalman Filter

Let us assume we have data observed over N time steps, {zk}ivzl, and the
corresponding hidden states as {Hk}ivzl (where 0 € R%=*1 7, € RAXL). The
Kalman filter system equations are:

z, = COp + vy

_ (1)
0, =A0,_1 +s;



where C € #94%42 ig the observation matrix, A € R9*% ig the state transition
matrix, vi € R4 > is the observation noise at time step k, and s;, € 24> is the
state noise at time step k. We assume v ~ Normal (0, R), si ~ Normal (0, Q),
where R € R%1%41 and Q € R92*92 are diagonal covariance matrices (with vec-
tors r and q on their diagonals) for the observation and state noise, respectively.
The corresponding filter propagation and update equations are, for k = 1, .., IV:

Propagation:
0 = A (0r-1) (2)
X =AY, AT +Q (3)

Update:

s, = (Cx,C" +R)
K, = X, CTs/,
(0r) = 8, + K}, (2 — CO},)
2y =(1-K,C) X,

where (0),)% is the posterior mean vector of the state 8, X} is the posterior
covariance matrix of 8, and Sj, is the covariance matrix of the residual prediction
error—all at time step k. The system dynamics (C, A, R and Q) are unknown,
and we can use a maximum likelihood framework to estimate these parameter
values . Unfortunately, the standard Kalman filter is not robust to outliers.

2.1 Robust Kalman Filtering with Bayesian Weights

To overcome this limitation, we introduce a scalar weight wy for each observed
data sample z; such that the variance of zp is weighted with wy, as done
in [10]. [10] considers a weighted least squares regression model and assumes
that the weights are known and given. We place a Gamma prior distribution
over the the weights to ensure they remain positive, as done previously in [11].
Additionally, we learn estimates for the system dynamics at each time step. The
prior distributions of our model are:

Zx |0k, wi ~ Normal (COy, R/wy)
01|0r—1 ~ Normal (Afx_1,Q) (8)

wi ~ Gamma (aw, , bw,,)

We can treat this problem as an Expectation-Minimization-like (EM) learn-
ing problem [12,13] and maximize the log likelihood logp(01.n). Due to an-
alytical issues, we only have access to a lower bound of this measure. This
lower bound is based on an expected value of the “complete” data likelihood
(logp (01.n,21.n,W)), formulated over all variables of the learning problem.
Since we are considering a real-time problem, we will have observed only data
samples z;., at time step k. Consequently, we should consider the log evidence

3 Note that () denotes the expectation operator



of only the data samples observed to date, i.e., logp (01.k, Z1.x, W1.x ), When esti-
mating the posterior distributions of random variables at time step k.

The expectation of the complete data likelihood should be taken with respect
to the true posterior distribution of all hidden variables @ (w,8). Since this is
an analytically intractable expression, we use a technique from variational cal-
culus to construct a lower bound and make a factorial approximation of the true
posterior as follows: Q (w,0) = Hﬁl Q (w;) Hivzl Q(0:10:-1) Q(Oy) (e.g., [13]).
This factorization of @ conserves the Markov property that Kalman filters, by
definition, have and makes the resulting posterior distributions over hidden vari-
ables analytically tractable. The factorial approximation was chosen purposely
so that Q(wy) is independent from Q(6}); performing joint inference of wy and
0, does not make sense in the context of our generative model. The final EM
update equations for time step k are:

E-step:
= () ORI O+ Qi) ©)
(01) = 2 (Q " Ax (B1-1) + (wr) CTR; 2. ) (10)
) = buro + { (2 C:;:)Jr " (21 — Cib1)) ()

M-step:
G = (Sh, (w2 (00)7) (S, fw) (0:07)) (12)
A= (T, 00 (00)7) (T, (00%0)) (13)
Tim = § 0y (W ><<zzm—ck<m, )0:)%) (14)
Gin = 5 2y ((Oin — Ax(n,)8i-1)%) (15)

where m = 1,..,dy, n = 1,..,do; Tk is the mth coefficient of the vector ry;
Qkn is the nth coefficient of the vector qi; Ci(m,:) is the mth row of the matrix
Ck; Ak(n,:) is the nth row of the matrix Ay; and ay, 0 and by, o are prior scale
parameters for the weight wy. Equations (9) to (15) should be computed once
for each time step k (e.g., [14]) when the data sample z; becomes available.
Since storing sensor data is not possible in real-time applications, (12) to
(15)—which require access to all observed data samples up to time step k—need
to be re-written using only values observed, calculated or used in the current
time step k. We can do this by collecting sufficient statistics in (12) to (15) and
rewriting them as:

1

Ci = sumy’ b (sumzv‘g‘9 ) (16)
’ Il -1

Ay = sum?? (sumg o ) (17)

Thm = 7 [sum};";f — 2C(m, :)sum*Z? + diag {Ck( :)sumy) woo™ Cr(m )T}] (18)

Qrn = 7 [sumii —2A%(n, :)sumi?; + diag {Ak )sumk Ak( )T}] (19)



where m = 1,..,dy, n = 1,..,ds, and the sufficient statistics are:

sumZ"zeT = (wy) z1, (01)T + sumZ"f?T sumZ"%T = (wy) <0k0;§> + Sum‘,g’ffT
! !’ Iy 1’
sumf? = (0;) (0_1)" + sum??, sumf ¢ = <0k,10;§,1> + sum? 9,
Sum;{,’iz = <wk> Zlgrm + Sum‘lgfi Sum‘l::‘{r‘rzlg = <wk> kaek + Sumz-vf?,m
2 2 ’ ’
SumZn = <9in> + Sumifl,n SHmZZ = <9kn> <0k71> + Sumzi

A few remarks should be made regarding the initialization of priors used in (9)
o (11), (16) to (19). In particular, the prior scale parameters a,, o and by, o
should be selected so that the weights (wy) are 1 with some confidence, i.e., the
algorithm starts by assuming most data samples are inliers. We set a0 = 1
and by, 0 = 1 so that (wy) has a prior mean of ay, 0/bw,,0 = 1 with a variance
of @, 0/bs, o = 1. This set of values is generally valid for any data set and/or
application and does not need to be modified, unless the user has good reason to
insert strong biases towards particular parameter values. Since prior knowledge
about the observed data’s properties must be known in order to distinguish if a
data sample is an outlier or part of the data’s structure, this Bayesian approach
provides a natural framework to incorporate this information.

Secondly, the algorithm is relatively insensitive to the the initialization of A
and C and will always converge to the same final solution, regardless of these
values. For our experiments, we initialize C = A = I, where I is the identity
matrix. The initial values of R and Q should be set based on the user’s initial
estimate of how noisy the observed data is (e.g., R = Q = 0.011 for noisy data,
R = Q = 1071 for less noisy data ).

2.2 Relationship to the Kalman Filter

If we substitute (2) and (3) into (4) to (7), we reach recursive expressions for (6y)
and Yy, proving that our model is a variant of the Kalman filter. By applying
this sequence of algebraic manipulations in reverse order to (9) and (10), we
arrive at the following:

Propagation:
0, = Ay (01_1) (20)
= Qu (21)

Update:

1 —1
Si = <Ck2;C£ + —Rk) (22)
(wi)

K} = X,.Ci S (23)
<0k> = 0;6 + K;ﬂ (Zk — Ckaﬁe) (24)
X = (I-KiCy) X}, (25)

Close examination of the above equations show that (9) and (10) in the Bayesian
model correspond to standard Kalman filter equations, with modified expressions



for X and S/, and time-varying system dynamics. X is no longer explicitly
dependent on X_1, since X1 does not appear in (21). However, the current
state’s covariance Xy is still dependent on the previous state’s covariance Xy _1
(through parameters K’ and Cy).

Additionally, the term Ry, in Sj; is now weighted. Equation (11) reveals that if
the prediction error in zg is so large that it dominates the denominator, then the
weight (wy) of that data sample will be very small. If z; has a very small weight
(wg), then S}, the posterior covariance of the residual prediction error, will be
very small, leading to a very small Kalman gain K. In short, the influence of the
data sample z; will be downweighted when predicting 6y, the hidden state at
time step k. The resulting Bayesian algorithm has a computational complexity
on the same order as that of a standard Kalman filter, since matrix inversions are
still needed, as in the standard Kalman filter. In comparison to other Kalman
filters that use heuristics or require more involved computation/implementation,
this outlier-robust Kalman filter is principled and easy to implement.

3 Experimental Results

We evaluated our weighted robust Kalman filter on data collected from a a
robotic dog, LittleDog, manufactured by Boston Dynamics Inc. (Cambridge,
MA), and compared it with two other filters. We omitted the filter of [9], since
we had difficulty implementing it. Instead, we used a hand-tuned thresholded
Kalman filter to serve as a baseline comparison. The two other filters consist of
the standard Kalman filter and a Kalman filter where outliers are determined by
thresholding on the Mahalanobis distance. If the Mahalanobis distance exceeds
a certain threshold value, the associated data sample is considered an outlier and
ignored. If we have a priori access to the entire data set and are able to manually
hand-tune this threshold value accordingly, the thresholded Kalman filter gives
near-optimal performance. Recall that we are interested in the Kalman filter’s
prediction of the observed data and detection of outliers in the observations.
Estimation of the system dynamics for the purpose of parameter identification
is a different problem, and more details can be found in [15].

3.1 LittleDog Robot

We evaluated all filters on a 12 degree-of-freedom robotic
dog, LittleDog, shown in Fig. 1. The robot dog has two
sources that measure its orientation: a motion capture
(MOCAP) system and an on-board inertia measurement
unit (IMU). Both provide a quaternion g of the robot’s
orientation: gvocap from the MOCAP and gpvy from the
IMU. ¢y drifts over time, since the IMU cannot pro-
vide stable orientation estimation but its signal is clean. In
contrast, gnocap has outliers and noise, but no drift. We
would like to estimate the offset between gvocap and gnvu, and this offset is

Fig. 1. LittleDog



a noisy slowly drifting signal containing outliers. Depending on the quality of
estimate desired, we can estimate it with a straight line, as done in [11]. Al-
ternatively, if we want to estimate the signal more accurately, we can use the
proposed outlier-robust Kalman filter to track it. For optimal performance, we
manually tuned C, A, R and Q for the standard Kalman filter—a tricky and
time-consuming process. The system dynamics of the thresholded Kalman filter
were learnt using a maximum likelihood framework. Its threshold parameter was
manually tuned for best performance on this data set.
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Fig. 2. Observed vs. predicted data from LittleDog robot shown for all Kalman
filters (KF), over 6000 samples

Figure 2 shows the offset data (in gray circles) between gnocap and gnvu
for one of the four quaternion coefficients, collected over 6000 data samples, at
1 sample/time step. Figure 2(a) shows that the standard Kalman filter fails to
detect outliers occurring between the 4000th and 5000th sample. Figure 2(b)
shows that the thresholded Kalman filter does not react as violently as the
standard Kalman filter to outliers and, in fact, appears to perform similarly to
the weighted robust Kalman filter. This is to be expected, given we hand-tuned
the threshold parameter for optimal performance.

4 Conclusions

We derived an outlier-robust Kalman filter by introducing weights for each data
sample. This Kalman filter learns the weights and the system dynamics, without
the need for any manual parameter tuning by the user, heuristics or sampling. It
performs as well as a hand-tuned Kalman filter (that required prior knowledge of
the data) on robotic data. It provides an easy-to-use competitive alternative for
robust tracking of sensor data and offers a simple outlier detection mechanism
that can potentially be applied to more complex, nonlinear filters.
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