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• Consider real-time applications where storing data samples may not be a
viable option due to high frequency of sensory data

• In systems where high quality sensory data is needed, reliable detection
of outliers is essential for optimal performance (e.g. legged locomotion):

• The Kalman filter (Kalman, ’60) is commonly used for real-time tracking,
but it is not robust to outliers!

Motivation
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Previous Methods

Complicated resulting parameter
estimation for systems with
transient disturbances

Difficult & involved filter
implementation

Heavy computation not suitable
for real-time applications

Need to determine the optimal
values of open parameters

1) Use non-Gaussian distributions for
random variables (Sorenson & Alspach
’71, West ’82)

2) Model observation & state noise as
non-Gaussian, heavy-tailed
distributions (Masreliez ’75)

3) Use resampling or numerical
integration (Kitagawa ’87)

4) Use a robust least squares approach &
model weights with heuristic functions
(e.g., Durovic & Kovacevic, ’99)

DrawbackRobust Kalman filter approach
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• The system equations for the Kalman filter are as follows:

A Quick Review of the Kalman Filter
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Standard Kalman Filter Equations

Propagation:
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Can use ML
framework to estimate
system dynamics
(Myers & Tapley, 1976)
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• Use a weighted least squares approach & learn the optimal weights:

Robust Kalman Filtering with Bayesian Weights
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• We can treat this as an EM learning problem (Dempster & Laird, ’77):

• We use a variational factorial approximation of the true posterior
distribution:

to get analytically tractable inference (e.g., Ghahramani & Beal, ’00).

Inference Procedure
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Robust Kalman Filter Equations

Propagation:
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Compare to
standard
Kalman filter
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Important Things to Note

1) Has the same computational complexity as the standard Kalman filter

2) Is principled & easy to implement (no heuristics)

3) Offers a natural framework to incorporate prior knowledge of the
presence of outliers

• Our robust Kalman filter:
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Real-time Outlier Detection on LittleDog

Our robust KF performs as well as a hand-
tuned KF (that required prior knowledge
and, hence, is near-optimal)

Outliers
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• We have introduced an outlier-robust Kalman filter that:

1) Is principled & easy to implement
2) Has the same computational complexity as the Kalman filter
3) Provides a natural framework to incorporate prior knowledge of noise

• This framework can be extended to other more complex, nonlinear filters
& methods in order to incorporate automatic outlier detection abilities.

Conclusions
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Final Posterior EM Update Equations

E-step:
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These are computed once for each time step k (e.g.,
Ghahramani & Hinton, 1996)

Need to be written in
incremental form
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Incremental Version of M-step Equations

M-step:
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• Gather sufficient statistics to re-write M-step equations in
incremental form (i.e., only using values observed or calculated in
the current time step, k):


